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Abstract: The network scale-up method (NSUM) is a cost-effective approach

to estimating the size or prevalence of a group of people that is hard to reach

through a standard survey. The basic NSUM involves two steps: estimating

respondents’ degrees by one of various methods (in this paper we focus on the

probe group method which uses the number of people a respondent knows in

various groups of known size), and estimating the prevalence of the hard-to-

reach population of interest using respondents’ estimated degrees and the number

of people they report knowing in the hard-to-reach group. Each of these two

steps involves taking either an average of ratios or a ratio of averages. Using

the ratio of averages for each step has so far been the most common approach.

However, we present theoretical arguments that using the average of ratios at

the second, prevalence-estimation step often has lower mean squared error when

a main model assumption is violated, which happens frequently in practice; this

estimator which uses the ratio of averages for degree estimates and the average of

ratios for prevalence was proposed early in NSUM development but has largely

been unexplored and unused. Simulation results using an example network data
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set also support these findings. Based on this theoretical and empirical evidence,

we suggest that future surveys that use a simple estimator may want to use this

mixed estimator, and estimation methods based on this estimator may produce

new improvements.

Keywords: Aggregated relational data (ARD), hard-to-reach populations, hid-

den populations, network scale-up method (NSUM), prevalence estimation, size

estimation, surveys.

1 Introduction

Surveys are a standard approach to estimating the size of subpopulations, or groups of people

with a particular trait. Many key subpopulations of interest, however, are hard to reach with

standard surveys (Bernard et al., 1991; Killworth et al., 1998). For example, (1) it may be

hard to get a list of the members of this subpopulation or they may be hard to contact, as

in the case of the homeless subpopulation; (2) it may be hard to accurately determine their

membership in the subpopulation because their group status is stigmatized, as in the case

of heavy drug users; and/or (3) the subpopulation is often fairly rare.

There are generally two strategies to this estimation problem that use social networks.

One is to adapt the survey methods to find more members of the subpopulation, then

provide guarantees that the results are probabilistic. This category includes methods such as

respondent driven sampling (RDS) and snowball sampling (Salganik and Heckathorn, 2004;

Handcock et al., 2014; Crawford et al., 2018). These methods involve surveying members

of the population of interest, and therefore they have the advantage that researchers may

ask additional questions to study other aspects of the population in addition to estimating

prevalence. For example, one could not only estimate the number of people who have been

trafficked in a given region but also study how they entered trafficking, what enabled them

to leave if they left, and what factors increased or decreased their vulnerability to trafficking.
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However, this approach is not always feasible, and when it is, it can be expensive, particularly

if the survey aims to estimate sizes for multiple subpopulations.

The other strategy, the network scale-up method (NSUM), is to conduct a traditional

survey with a representative sample from the general or frame population and ask respon-

dents how many people they know in the hidden populations of interest, then use information

about their personal network sizes (degrees) to scale up their data into an estimate for the

general prevalence of those populations (Bernard et al., 1991, 2010). Respondents’ degrees

are also estimated by asking similar questions about groups of known sizes (McCormick

et al., 2010). The responses to questions of the form “How many people do you know with X

trait?” are known as aggregated relational data or ARD (McCormick and Zheng, 2015). This

approach does not require knowing whether the respondents themselves are in the hidden

populations.

In this paper we focus on the NSUM strategy. We conducted an initial literature search

and found that the majority of studies use one of the simplest estimators. However, we find

that when a key model assumption is violated, as it often is in practice, the mean squared

error (MSE) may actually tend to be much smaller for another simple estimator that is

equally easy to implement but much less commonly used. We demonstrate this through

theoretical derivations as well as simulations with a real network data set.

The paper is structured as follows: Section 2 introduces the key estimators of interest in

this study. Section 3 presents our framework for studying the behavior of these estimators in

the presence of barrier effects. Section 4 details the analytical results comparing estimator

bias, variance, and RMSE in this setting. Section 5 examines the results of simulated surveys

using real network data, the Facebook 100 data set. Code for the analytical and simulation

results is available at https://github.com/jpierkunke/simple-nsum-robust. Section 6

concludes with a discussion.
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2 NSUM estimators

In this section, we introduce the estimators of interest in this study as compositions of degree

and prevalence estimators. We discuss the assumptions underlying the models that led to

these estimators, which estimators are currently used in practice, and why we reevaluate

which estimator if any should be the standard.

The target of estimation is the prevalence R of the hidden group H in the general pop-

ulation, which equals the ratio of the hidden group size to the size N of the general or

frame population. For each respondent in a sample of size n, let yi represent respondent i’s

response to the ARD question, “How many people do you know in H?” Let di represent the

true degree of respondent i. In practice, these degrees are unknown and must be estimated.

Therefore, we can decompose the estimation problem into two steps: first estimating respon-

dents’ degrees, then using these degree estimates d̂i with the responses yi to estimate the

prevalence R.

The NSUM approach is based on the idea that given the response yi and degree di for

one person, a rough estimate of the hidden group prevalence is yi/di (Bernard et al., 1991).

To obtain a better estimate, we can pool the responses and degrees from a larger sample of

people. This information can be pooled in two basic ways, either the ratio of average response

to average degree (ratio of averages, hereafter RoA) or the average ratio of response to degree

(average of ratios, hereafter AoR):

R̂RoA =

∑
i yi∑
i di

, R̂AoR =
1

n

n∑

i=1

yi
di
. (1)

We could call the RoA estimator a ratio of sums since we have dropped the factor of 1/n

from the numerator and denominator, but we still refer to it as the ratio of averages to em-

phasize that the difference between the two estimators is simply the order of two operations,

averaging and dividing.

Similarly, the degrees can be estimated by asking respondents how many people they
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Table 1: Each of the three estimators can be viewed as a composition of a hidden group
prevalence estimator and a degree estimator. Each component estimator may be the ratio of
averages (RoA) or the average of ratios (AoR). The fourth combination, using the AoR degree
estimator and the RoA prevalence estimator, has not been proposed to our knowledge and,
based on our analysis of the other estimators, seems unlikely to perform well. We list MLE
in quotes to indicate that the dRpR is not itself an MLE. The ROA prevalence estimator is
the MLE for R conditional on degrees, and the dRpR uses this prevalence estimator with
estimated degrees.

Degree estimator Prevalence estimator Other names

dRpR RoA d̂i = N ·
∑

j yij∑
j Nj

RoA R̂ =
∑

i yi∑
i d̂i

“MLE”

dRpA RoA d̂i = N ·
∑

j yij∑
j Nj

AoR R̂ = 1
n

∑
i
yi
d̂i

PIMLE

dApA AoR d̂i = N · 1
K

∑
j
yij
Nj

AoR R̂ = 1
n

∑
i
yi
d̂i

MoS

dApR AoR d̂i = N · 1
K

∑
j
yij
Nj

RoA R̂ =
∑

i yi∑
i d̂i

(Unmentioned)

know in each of K subpopulations of known size, often called probe groups; here, known

size means that the number or prevalence of each probe group in the general population

can be obtained from census information or other data sources. For example, respondents

might be asked how many people named Jamal they know and how many firefighters they

know; this would provide responses yij for each person i about probe group j ∈ {1, 2}, where

the two probe groups are the subsets of the general population (1) named Jamal and (2)

serving as firefighters, respectively. Note that probe groups can and often do overlap; people

named Jamal who serve as firefighters would be counted in both of these group sizes. Then

analogously to the prevalence estimates based on respondents’ degrees, the degrees can be

estimated based on these K probe groups by either the RoA or the AoR:

d̂i,RoA = N ·
∑

j yij∑
j Nj

, d̂i,AoR = N · 1

K

K∑

j=1

yij
Nj

.

These separate degree and prevalence estimators can be combined in four ways to obtain

a two-step prevalence estimator that incorporates the degree estimation step (see Table 1).

To be explicit and concise, we will refer to these estimators by the choice of degree estimator

5



followed by the choice of prevalence estimator; for example, we will use the name dRpA to

refer to the estimator which plugs the ratio of averages for the degree estimates into the

average of ratios for the prevalence estimates.

The NSUM is cost effective but also depends on fairly strong assumptions that are known

to be non-negligibly violated in many settings. The assumption that yi/di = R either for

each person i or on average in one of the senses presented in (1) above is known as the

constant proportion assumption. Violations of this assumption are called barrier effects.

The binomial model also assumes perfect visibility (each respondent knows whether each

person in their network is in H), perfect recall (each respondent can enumerate everyone

they know, or report the correct total), truthful answers, and the absence of other survey

and response error. In this paper, we focus specifically on barrier effects.

We often expect there to be barrier effects in practice. Typically, we expect that not

everyone in the population is equally likely to know people in the hidden population of

interest (see for example McCormick and Zheng (2012) for more discussion). For instance,

homophily often drives connections, and people who are more similar to people in the hidden

population may be more likely to know them (McPherson et al., 2001). Additionally, there

is evidence that people in the hidden subpopulation often have smaller degrees than people

in the general population, which we will see necessarily violates the constant proportion

assumption (Shelley et al., 1995).

In the years since the early NSUM papers, a body of research has extended this model to

handle barrier effects and relax the constant proportion assumption; McCormick (2021) and

Laga et al. (2021) provide detailed reviews of these methods. However, these approaches are

more complex and require additional data. For example, the generalized NSUM developed

by (Feehan and Salganik, 2016) can be used in the presence of barrier effects and imperfect

visibility, but this approach requires sampling from the hidden population in addition to the

original probability sample from the general population. For this reason, they also describe

how correction factors can be applied to the dRpR estimator if sufficient data and expert
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knowledge exist to estimate those factors. We conducted an initial literature search of papers

published in 2021 using the network scale-up method to investigate what methods researchers

currently seem to use in practice, and we found no papers that use the dRpA and only two

reviews or guidance references that even mentioned it (see online supplement for details).

Most of the studies used either the dRpR, sometimes with scaling factors as recommended

by Feehan and Salganik (2016), or a more complicated model developed by Maltiel et al.

(2015).

The most commonly used of these four estimators seems to be the dRpR estimator, first

proposed to our knowledge by Killworth et al. (1998). An earlier paper by Killworth et al.

(1998) compares the dRpA and dApA estimators, and a more recent paper by Habecker

et al. (2015) promotes the use of the dApA estimator, which they call the mean-of-sums

estimator or dApA. We are not aware of any literature considering or proposing the use of

the dApR estimator, and our results in this study suggest it is unlikely to outperform the

other estimators, but it could be studied in future work. In the present study, we focus on

evaluating the other three estimators.

When the binomial model is true, both the AoR and RoA prevalence estimators with

fixed or known degrees are unbiased, but the latter has a smaller variance. Killworth et al.

(1998) compute and empirically evaluate the dRpR and dRpA on a data set, but their

theoretical analysis assumes the degrees are known; thus their theoretical analysis concerns

only the (one-step) AoR and RoA prevalence estimators, not the (two-step) dRpR and dRpA

estimators. The degree estimation step in the dRpR and dRpR estimators not only involves

additional uses of the conditional proportion assumption to estimate the degree, but also

accounts for the distribution of degrees rather than conditioning on them. Perhaps this is

the reason that surveys tend to use the dRpR if they use one of the simple estimators, and

that researchers tend to start from the dRpR when they develop methods to extend the

NSUM approach and relax modeling assumptions.
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3 A framework for studying estimator behavior under

barrier effects

Our question is, how do these estimators compare under violations of the constant proportion

assumption, since such violations are common in practice? To investigate this, we assume

a model for link formation in the general population, then consider the distribution of the

estimators over simple random samples from that population without replacement. The

binomial model can be viewed as an approximation to the Erdös-Renyi network model in

which the presence or absence of a link between each pair of nodes is independently drawn

from the same Bernoulli(p) distribution (see online supplement and Cheng et al. (2020)

for details). In this study, we generalize this model to incorporate barrier effects by using

a stochastic block model (SBM) with two groups, the hidden group of interest (H) and

everyone else (L).

Under the two-group SBM, the probability of a link between any two nodes takes one

of three values depending on the membership of the two nodes involved; let us denote the

within-group probabilities by pHH and pLL and the between-group probability by pHL. This

model will have barrier effects as long as pHH > pHL, since in that case members of H will be

more connected than members of L to people in H. The dissortative condition pHH < pHL

would also create barrier effects but is typically less realistic in practice. The Erdös-Renyi

model is a special case of this SBM with pHH = pHL = pLL.

Many network models can be approximated by a stochastic block model (Olhede and

Wolfe, 2014), so the two-group SBM is a motivating choice for studying the impact of barrier

effects. The two-group SBM may provide insights that have more general relevance, such as

behavior based on network assortativity, even if a given problem is not believed to follow a

two-group SBM.

For the sake of interpretability, we start with a simple case using estimated degrees: we

suppose that respondents’ degrees are estimated using one probe group K. Furthermore
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we suppose that K ⊂ L to avoid having to specify the prevalence of H within K, which

would be necessary to compute expectations and variances. This renders the probe group

unrepresentative of the general population, since it contains no one in the hidden group H,

but this is sometimes a concern with the choice of probe groups and is relevant to evaluate

here. Additionally, the real data example in Section 5 assumes more than one probe group

and does not require the probe group to be disjoint from H.

For the case of a single probe group, the AoR and RoA degree estimators are identical;

therefore the dApA and dRpA estimators are equivalent when degrees are estimated using

a single probe group, and our analytical results will only compare the choice of prevalence

estimator. However, this analysis still accounts for the additional use of the constant pro-

portion assumption in estimating the degrees, and it also accounts for the distribution of

degrees instead of conditioning on them. The degree estimators are no longer identical when

more than one probe group is used; therefore we save comparison with the dApA for Section

5.

Killworth et al. (1998) assume a simple random sample without replacement, and Habecker

et al. (2015) propose a way to extend this to general probability survey designs. We provide

a note about this in the online supplement and suggest modifications to this extension, but

for simplicity and to stay consistent with the original estimators, in this study we assume

simple random sampling without replacement.

4 Analytical results on estimator bias and variance

We begin by deriving approximations to the bias and variance of each estimator under a two-

group stochastic block model assuming degrees are estimated using a single probe group K

contained in L. Then to facilitate interpretation, we restrict further to the case in which the

within-group link probabilities are equal to the same scaling factor a times the between-group

link probability pHL. We present closed-form approximations for the bias and variance, and
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we numerically compute the bias, variance, and RMSE for the two estimators over a range of

parameter values to characterize the regions in which one estimator outperforms the other.

As mentioned previously, the dApA and dRpA estimators are equivalent when degrees are

estimated using a single probe group; hence this section discusses only the dRpR and the

dRpA. However, the dApA and dRpA are distinct once there is more than one probe group,

so we compare all three estimators in Section 5.

Under the two-group SBM, the number of people person i knows in the hidden group H

and probe group K, respectively, is given by

YiH =

N∗
H∑

j=1

Aij ∼ Binom(N∗
H , pH gi), YiK =

N∗
K∑

j=1

Aij ∼ Binom(N∗
K , pgi L),

where gi ∈ {H,L} denotes the group membership of person i; YiH and YjH are independent

for any i, j (i = j or i 6= j); N∗
H = NH − 1 if i ∈ H and N∗

H = NH otherwise; and N∗
K is

defined analogously to N∗
H . Henceforth we assume NH and NK are sufficiently large such

that N∗
H ≈ NH and N∗

K ≈ NK .

Using first-order Taylor approximations for the expectation and variance of ratios, we

can estimate the expectation and variance of the estimators over the SBM superpopulation

for a given sample, then take the limit nH/n → R as in simple random sampling without

replacement. In each case, the expectation is a function only of R and the three link prob-

abilities, while the variance is also a function of n, N , and NK (see Appendix A for further

details):

E
(
R̂dRpR

)
→ R

RpHH + (1−R)pHL

RpHL + (1−R)pLL

E
(
R̂dRpA

)
→ R

[
R
pHH

pHL

+ (1−R)
pHL

pLL

]

Var
(
R̂dRpR

)
→ R

nN

(RpHL + (1−R)pLL)2 [RpHH(1− pHH) + (1−R)pHL(1− pHL)]

(RpHL + (1−R)pLL)4
+

10



R2

nNK

(RpHH + (1−R)pHL)2 [RpHL(1− pHL) + (1−R)pLL(1− pLL)]

(RpHL + (1−R)pLL)4

Var
(
R̂dRpA

)
→ R

nNp2HL

[
RpHH(1− pHH) + (1−R)pLL(1− pHL)

]
+

R2

nNKp3HL

[
Rp2HH(1− pHL) + (1−R)p2HL(1− pLL)

]

Note that when the three link probabilities are equal, corresponding to the binomial

model, the dRpR does not have smaller variance: both estimators have the same first-order

variance. We believe this is the first time this result has been shown for these estimators.

In this case, the first-order approximations of both estimators’ expectations equal the true

prevalence; in the language of Feehan and Salganik (2016) and other literature, both the

dRpR and dRpA estimators are essentially unbiased.

Thus we have expressions for the bias and variance of each estimator under a general two-

group stochastic block model when degrees are estimated using a single probe group K ⊂ L.

However, we would like to be able to characterize the regions of parameter space in which

each estimator performs better than the other, and interpretation is difficult with this many

parameters. Therefore we now analyze a slightly simpler case: Fix pHH = pLL = apHL for

some 0 < a <∞. Notice that a = 1 corresponds to the Erdös-Renyi case, a > 1 corresponds

to assortativity, and a < 1 corresponds to dissortativity. This reduces the number of degrees

of freedom in the parameters by one, since we can characterize the three link probabilities

with just the two parameters a and pHL, the latter of which we will now denote simply by p.

The biases are now a function only of a and R:

Bias
(
R̂dRpR

)
(a,R)→ R

[
(a− 1)(2R− 1)

(1−R)a + R

]

=





> 0 {a > 1} ∩ {R > 0.5} or {a < 1} ∩ {R < 0.5},

= 0 {a = 1} ∪ {R = 0.5},

< 0 else,
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Bias
(
R̂dRpA

)
(a,R)→ R

[
(a− 1)

[
(a + 1)R− 1

]

a

]

=





> 0 {a > 1} ∩ {a > 1−R
R
} or {a < 1} ∩ {a < 1−R

R
},

= 0 {a = 1} ∪ {a = 1−R
R
},

< 0 else.

The dRpR is unbiased if and only if the Erdös-Renyi case holds (a = 1) or the hidden

population prevalence is exactly 50%. The dRpA is unbiased if and only if the Erdös-Renyi

case holds (a = 1) or a = (1 − R)/R. It is unlikely that the parameters take these exact

values such that the estimators are exactly unbiased, but these conditions serve as boundary

cases to define regions in which one estimator or the other has smaller bias.

Now we approximate the variances. Defining rK = NK/N , the dependence simplifies to

effectively five parameters: R, a, p, rK , and nN , since the dependence on sample size n and

population size N is only through their product.

Var
(
R̂dRpR

)
→ R

nNp

[
(R + (1−R)a)2 (Ra + (1−R)− [Ra2 + (1−R)] p)

[R + (1−R)a]4
+

R

rK

(Ra + (1−R))2 (R + (1−R)a− [R + (1−R)a2] p)

[R + (1−R)a]4

]

Var
(
R̂dRpA

)
→ R

nNp

(
pa(1− a)R + (1− p)a +

1

rK

[(
[1− p]a2 + pa− 1

)
R2 + (1− pa)R

])

To characterize the conditions under which each estimator outperforms the other, we

evaluate the approximate bias and variance expressions above over a range of parameter

values and visualize the regions in which each estimator has lower bias, lower variance, and

lower RMSE. In the top row of Figure 1 we show the results for log(a) ranging from -4 to

4 in increments of 0.1, and R ranging from 0.01 to 0.99 in increments of 0.02. The bottom

row shows the results restricted to assortative cases with small R, with log(a) ranging from

0 to 4 in increments of 0.05, and R ranging from 0.001 to 0.1 in increments of 0.001. In both
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Bias (restricted) SE (restricted) RMSE (restricted)

Bias (full) SE (full) RMSE (full)
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Smaller
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Figure 1: Comparing estimator bias (left panel), variance (center panel), and RMSE (right
panel) as a function of a and R. The darkest regions indicate the combinations of a and
R for which the dRpA has the lower value of the quantity examined in that subplot. Note
the log scale on a, such that the x-axis corresponds to the Erdös-Renyi case a = 1 in which
the two estimators have the same bias and variance. Under assortativity and for prevalences
less than 10 or 20%, the dRpA generally has smaller bias and RMSE than the dRpR. Here,
p = 0.01, nN = 500, 000, and rK = 0.1. The top row shows results over a wider range of
parameter values while the bottom row shows results for a smaller range of parameter values
thought to reflect most practical settings, namely a > 1 (assortative) and prevalence smaller
than 10%. Under these conditions, the dRpA generally has smaller bias and RMSE than
the dRpR.
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these cases we fix p = 0.01, nN = 500, 000, and rK = 0.1 since the variance changes with

these parameters.

The leftmost panels of Figure 1 compare the bias of the two estimators as a function

of a and R; the darkest shaded region is the region in which the dRpA has smaller bias in

magnitude. We have already shown the two estimators have the same bias and variance and

therefore the same RMSE for a = 0, which is the x-axis in these figures. In practice, we

typically expect assortativity (a > 1) and a fairly small value of R, probably less than 10 or

20%; in this region of the parameter space (for any values of the other parameters, since the

estimator biases depend only on a and R), the dRpA has smaller bias.

The middle panels of Figure 1 illustrate that the variance is smaller for the dRpR under

assortativity and generally smaller for the dRpA under dissortativity. The rightmost panels

comparing the RMSE of the two estimators resemble the leftmost panels comparing the

bias. Therefore, in the settings most likely to be practically relevant, and for sample sizes and

population sizes likely to be realistic, the dRpA tends to have smaller RMSE. For assortative

settings with small prevalence R, the dRpA has lower RMSE. When the assortativity is

weaker, the dRpA has lower RMSE for a wider range of R, and under stronger assortativity

the upper bound on R for this region shrinks.

Therefore, although the dRpR is the most commonly used estimator in the literature,

the dRpA often has lower bias and RMSE in the presence of barrier effects.

The relative importance of the bias and variance in the RMSE are determined by nN ,

rK , and p. The region of parameter space in which the dRpA has lower RMSE increases with

nN and with p and decreases with rK ; see the online supplement for figures and additional

details. The size of this region depends more strongly on nN and p than on rK .
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5 Facebook 100 data example

We also conduct simulations using an example data set, and the results are consistent with

the analytical results in Section 4 even though we use multiple probe groups to estimate the

degrees.

For these simulations we use the Facebook 100 data set, which consists of the intra-school

links in the September 2005 Facebook networks of 100 colleges and universities (Traud et al.,

2011, 2012). The networks range in size from 769 to 41,554 nodes, typically fewer than 25,000.

Similar to Feehan et al. (2022), we create candidate probe groups from the following five

variables: status (such as faculty or student), gender, year, dorm, and major. We treat them

as categorial variables, with an indicator for each level of each variable, and each indicator

variable whose prevalence in that school network is 0.1-10% of the population is a candidate

probe group for that school network. We compare the bias, variance, and RMSE of the

dRpA, dRpR, and dApA.

For each school network, we select the 16 largest candidate probe groups to constitute

one hidden group and 15 probe groups used in estimating respondents’ degrees; we will refer

to a choice of school network and hidden group as a case. For each of the 100 schools there

are 16 ways to choose one of the 16 largest groups to be the hidden group, resulting in

1,600 cases total. For each case, we draw 500 “survey” samples of 500 people each using

simple random sampling without replacement to represent our survey respondents, and for

each survey sample we compute the dRpR, dRpA, and dApA estimates for that case. We

approximate the mean and variance of each estimator for each case as the sample mean and

sample standard deviation across the 500 surveys for that case, then use this to compute the

estimated bias and RMSE for each estimator.

We categorize the cases based on whether the degree ratio is “low” (< 0.8, 205 cases),

“high” (> 1.2, 378 cases), or near 1 (between 0.8 and 1.2, 1017 cases). The assortativity

coefficient of each case ranges from -0.09 to 0.88, with first, second, and third quartiles of

0.05, 0.19, and 0.35. All the cases with low degree ratios are assortative.
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Figure 2: Comparing the absolute-value bias (left panel), standard error (center panel), and
RMSE (right panel), all standardized by the true prevalence, of the dRpR and the dRpA in
the 205 “low” degree ratio cases (< 0.8, with darker points representing lower degree ratios)
from the Facebook 100 simulations. The diagonal line is the one-to-one line; points above the
line have lower values for the dRpA than the dRpR. Each point represents the average across
500 surveys of size 500 for one combination of school network and hidden group. Among
these cases, the dRpA has almost strictly smaller bias, larger variance, and smaller RMSE.

These simulations result in some degree estimates equal to zero. As a result, the dRpA

and dApA sample estimates for a given survey are NaN when both the numerator (response)

and denominator (estimated degree) are zero for a given person and Inf when only the

estimated degree is zero. For each case (combination of school network and choice of hidden

group from among the 16 largest groups), we exclude the NaN and Inf survey estimates in

computing the mean and standard deviation of the survey estimates, reducing the effective

sample size.

Figure 2 compares the absolute value of the bias, standard error, and RMSE of the dRpR

and dRpA estimators for the cases with low degree ratios, thought to be more relevant to

hidden population settings. We standardize these metrics by the true prevalence of each case

since the true prevalence varies widely across cases. The dRpA has lower bias and RMSE

than the dRpR in all except two of these 205 cases, which have degree ratios 0.7 and 0.72.

Across the low degree ratio cases, the dRpA has 0.1-56% error while the dRpR has 22-81%

error.

Figures comparing the dRpR and dRpA estimators for the cases with near-one and high
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degree ratios are provided in the online supplement, but we provide some comments here. We

find that when the degree ratio is near one, the dRpA and dRpR have comparable bias and

RMSE and the dRpR tends to have smaller variance. For cases with high degree ratios, the

dRpA tends to have lower bias and RMSE than the dRpR and their variance is comparable.

Therefore, researchers that are confident the degree ratio is near 1 for the hidden and general

population of interest to them may want to use the dRpR, but otherwise the dRpA may

generally have lower RMSE.

Figure 3 illustrates that in these Facebook 100 simulations, the dRpA tends to have

smaller bias, variance, and RMSE than the dApA estimator regardless of degree ratio. Recall

that the dApA estimator uses the same size estimator as the dRpA but uses the average of

ratios for the degree estimator as well (Table 1). This choice increases not only the variance

but the bias. We suspect the increased bias follows from the fact that the probe groups

are intended to be collectively but not necessarily individually representative of the general

population (McCormick et al., 2010). If the set of chosen probe groups satisfy this property,

then taking the ratio of averages keeps the numerator and denominator representative while

taking the average of ratios changes the relative weighting of the probe groups.

6 Discussion

We have presented theoretical and empirical evidence that over what seems likely to be a

realistic range of true prevalence, sample size, and population size, the dRpA estimator often

has lower bias and RMSE than the dRpR estimator under a two-block stochastic block model

with assortativity. In other words, using the average-of-ratios size estimator and the ratio-

of-averages degree estimator often has lower bias and RMSE than using the ratio of averages

for both the degree and size estimators. We have also shown empirical evidence that the

dRpA estimator has lower bias, RMSE, and variance than the dApA estimator, suggesting

that using the average-of-ratios size estimator with the ratio-of-averages degree estimator is
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Figure 3: As in Figure 2 except comparing all three estimators for all 1,600 cases. The dRpA
tends to have lower bias and RMSE than both the other estimators and lower variance than
the dApA.
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better than using the average-of-ratios size estimator for both the size and degree estimators.

We have provided some reasoning for these findings.

The evidence in favor of one estimator over another still depends on the range of pa-

rameter values expected to be practically relevant. The more we know about the typical

network and sample size, assortativity, approximate prevalence, typical degree sizes, and

the fraction of the population that is in one or more of the probe groups in hard-to-reach

population studies, the better we can constrain the relative performance of the estimators.

Additionally, the Facebook 100 network data do not represent subpopulations we expect to

be hidden. Comparing the robustness of these estimators on additional data sets beyond our

initial example, particularly using network data sets involving hidden populations, would

provide more direct evidence for evaluating these estimators.

Generalized NSUM and other complex methods are likely to be preferable to these sim-

ple estimators when feasible. However, in studies that use one of these simple estimators

without any corrections, the dRpA may be the most robust choice. When the necessary

data is available, it may be easier to correct bias in the dRpR estimator than the dRpA

since the dRpR bias can be expressed directly in terms of the degree ratio; however, this

requires having reliable estimates of the degree ratio. When ad hoc corrections to the simple

estimators are applied to the dRpR, it may be helpful to also compute the dRpA to help

bound the result; it is easily done and does not require additional data or computational

power.

Additionally, these results raise the question whether it may be more robust to develop

methods based on the dRpA instead of the dRpR. This may depend on how successfully we

can characterize the bias of the dRpA and correct for it. It may turn out that we can more

readily understand and correct for the bias of the dRpR.

Hidden populations are often studied in the context of estimating the impact of a social

or epidemiological concern; for instance, estimating the number of people who have experi-

enced labor trafficking is part of an effort to understand, intercept and prevent trafficking.
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Studies may benefit from using RDS and related methods to learn about possible causes and

interventions, while using NSUM to do more frequent monitoring. For example, researchers

and monitoring agencies could use NSUM regularly to estimate how many people are being

trafficked over time, and implement less frequent RDS studies to both validate the NSUM

estimates and learn from people who have been trafficked how they entered their situation,

how they were able to leave, or what prevented them.

Supplementary Materials

Section S1 contains proofs that the average-of-ratios degree estimators and prevalence esti-

mators have greater variance than their ratio-of-averages counterparts under the binomial

model. Section S2 presents the results of our initial literature search of current NSUM prac-

tice. Section S3 demonstrates that the binomial model approximates the Erdös-Renyi model;

this is not a new result but is included here for completeness and convenience. Section S4

contains additional figures referenced in the body of the paper that pertain to either (a) the

analytical results using a single probe group and estimated degrees or (b) the Facebook 100

data example.
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A Derivations

E(YiH) =





NHpHH i ∈ H

NHpHL i ∈ L

E(YiK) =





NKpHL i ∈ H

NKpLL i ∈ L
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Var(YiH) =





NHpHH(1− pHH) i ∈ H

NHpHL(1− pHL) i ∈ L

Var(YiK) =





NKpHL(1− pHL) i ∈ H

NKpLL(1− pLL) i ∈ L

n∑

i=1

E(YiH) = NH (nHpHH + nLpHL)
n∑

i=1

E(YiK) = NK (nHpHL + nLpLL)

n∑

i=1

Var(YiH) = NH (nHpHH(1− pHH) + nLpHL(1− pHL))

n∑

i=1

Var(YiK) = NK (nHpHL(1− pHL) + nLpLL(1− pLL))

First-order Taylor approximations for the mean and variance of a ratio of random vari-

ables are given by E(A/B) ≈ E(A)/E(B) and, if A and B are independent, Var(A/B) ≈

[E(B)2Var(A) + E(A)2Var(B)]/[E(B)4]. For handling more than one probe group and al-

lowing probe groups and the hidden group to overlap with each other, one can either assume

approximate independence or include the covariance term in the variance approximation; for

now we consider the case of a single probe group K that is disjoint from H.

Taking the expectation over the SBM superpopulation for a given sample,

E
(
R̂dRpR

)
= E

(
NK

N

∑n
i=1 YiH∑n
i=1 YiK

)

≈ NK

N

E (
∑n

i=1 YiH)

E (
∑n

i=1 YiK)
1st order Taylor approximation

=
NK

N

∑n
i=1E (YiH)∑n
i=1E (YiK)

=
NK

N

nHNHpHH + nLNHpHL

nHNKpHL + nLNKpLL

=
NH

N

nHpHH + nLpHL

nHpHL + nLpLL
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= R
nHpHH + nLpHL

nHpHL + nLpLL
.

Similarly, for the dRpA estimator,

E
(
R̂dRpA

)
= E

(
NK

N

1

n

n∑

i=1

YiH

YiK

)

=
NK

N

1

n

n∑

i=1

E

(
YiH

YiK

)

≈ NK

N

1

n

n∑

i=1

E (YiH)

E (YiK)

=
NK

N

[
nH

n

NHpHH

NKpHL

+
nL

n

NHpHL

NKpLL

]

= R

[
nH

n

pHH

pHL

+
nL

n

pHL

pLL

]
.

If nH/n→ R, as in simple random sampling without replacement, then

E
(
R̂dRpR

)
→ R

RpHH + (1−R)pHL

RpHL + (1−R)pLL
,

E
(
R̂dRpA

)
→ R

[
R
pHH

pHL

+ (1−R)
pHL

pLL

]
.

Var
(
R̂dRpR

)
= Var

(
NK

N

∑n
i=1 YiH∑n
i=1 YiK

)

=
N2

K

N2
Var

(∑n
i=1 YiH∑n
i=1 YiK

)

≈ N2
K

N2
· E(

∑n
i=1 YiK)2Var(

∑n
i=1 YiH) + E(

∑n
i=1 YiH)2Var(

∑n
i=1 YiK)

E(
∑n

i=1 YiK)4
(2)

=
N2

K

N2
· (
∑n

i=1E[YiK ])
2∑n

i=1 Var(YiH) + (
∑n

i=1E[YiH ])
2∑n

i=1 Var(YiK)

(
∑n

i=1E[YiK ])
4

(3)

=
N2

K

N2

(
N2

K (nHpHL + nLpLL)2NH [nHpHH(1− pHH) + nLpHL(1− pHL)]

N4
K (nHpHL + nLpLL)4

+
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N2
H (nHpHH + nLpHL)2NK [nHpHL(1− pHL) + nLpLL(1− pLL)]

N4
K (nHpHL + nLpLL)4

)

= R

(
1

N

(nHpHL + nLpLL)2 [nHpHH(1− pHH) + nLpHL(1− pHL)]

(nHpHL + nLpLL)4
+

R

NK

(nHpHH + nLpHL)2 [nHpHL(1− pHL) + nLpLL(1− pLL)]

(nHpHL + nLpLL)4

)
.

Step (2) above uses the Taylor approximation and Step (3) holds if YiG, YjG are indepen-

dent for i 6= j, G = H,K. A similar derivation for the dRpA yields

Var
(
R̂dRpA

)
≈ R

n2Np2HL

[
nHpHH(1− pHH) + nLpLL(1− pHL)

]
+

R2

n2NKp3HL

[
nHp

2
HH(1− pHL) + nLp

2
HL(1− pLL)

]
.

If nH/n→ R, then

Var
(
R̂dRpR

)
→ R

nN

(RpHL + (1−R)pLL)2 [RpHH(1− pHH) + (1−R)pHL(1− pHL)]

(RpHL + (1−R)pLL)4
+

R2

nNK

(RpHH + (1−R)pHL)2 [RpHL(1− pHL) + (1−R)pLL(1− pLL)]

(RpHL + (1−R)pLL)4

Var
(
R̂dRpA

)
→ R

nNp2HL

[
RpHH(1− pHH) + (1−R)pLL(1− pHL)

]
+

R2

nNKp3HL

[
Rp2HH(1− pHL) + (1−R)p2HL(1− pLL)

]
.
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Section S1 contains proofs that the average-of-ratios degree estimators and prevalence

estimators have greater variance than their ratio-of-averages counterparts under the binomial

model. Section S2 presents the details of our initial literature search to understand what

NSUM approaches are currently being used in practice. Section S3 demonstrates that the

binomial model approximates the Erdös-Renyi model; this is not a new result but is included

here for completeness and convenience. Section S4 contains additional figures referenced in

the body of the paper that pertain to either (a) the analytical results using a single probe

group and estimated degrees or (b) the Facebook 100 data example.

S1 Variance of AoR and RoA estimators

The two degree estimators under consideration are as follows:

d̂i,RoA = N ·
∑

j yij∑
j Nj

, d̂i,AoR = N · 1

K

K∑

j=1

yij
Nj

.

In the unlikely case that the probe groups are all the same size, then the two estimators are

identical and therefore also have the same variance. We explore how the variances compare

∗Correspondence: jkunke@uw.edu.
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outside of this special case. Under the binomial model, yij ∼ Binom(di, Nj/N). Therefore,

Var
(
d̂i,RoA

)
= di


N · 1

L

1∑
j Nj/L

−
∑

j N
2
j(∑

j Nj

)2


 .

The second term within the brackets is less than 1/L because Nj > 1 for each probe group

j. Therefore, if the average probe group size is smaller than O(N), the first term dominates:

Var
(
d̂i,RoA

)
≈ di

[
N · 1

L

1∑
j Nj/L

]
=

diN

L

1

mean(Nj)
.

Following similar reasoning,

Var
(
d̂i,AoR

)
= di

[
N

L

1

L

1∑
j Nj

− 1

L

]
≈ diN

L

1

L

1∑
j Nj

=
diN

L

1

hmean(Nj)
,

where hmean(Nj) denotes the harmonic mean of the probe group sizes. Since Nj > 0

for all j, the harmonic mean is strictly smaller than the arithmetic mean, and therefore

Var
(
d̂i,RoA

)
< Var

(
d̂i,AoR

)
if the average probe group size is sufficiently smaller than N .

A similar but simpler argument demonstrates the same result for the two prevalence

estimators (with fixed or known degrees) by comparing the arithmetic and harmonic means

of the degrees:

R̂RoA =

∑
i yi∑
i di

, R̂AoR =
1

n

∑

i

yi
di
.

Again, we ignore the trivial and impractical case in which all degrees are identical. Under

the binomial model, yi
indep∼ Binom(di, R). Therefore,

Var
(
R̂RoA

)
=

R(1−R)

n
· 1∑

i di/n
=

R(1−R)

n
· 1

mean(di)
,

Var
(
R̂AoR

)
=

R(1−R)

n
· 1

n

∑

i

1

di
=

R(1−R)

n
· 1

hmean(di)
.

For di > 0, outside of the case that all degrees are equal, the harmonic mean is strictly
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smaller than the arithmetic mean of the degrees. Therefore, Var
(
R̂RoA

)
< Var

(
R̂AoR

)
.

S2 Literature search of current NSUM practice

We conducted an initial literature search to examine which NSUM models applied researchers

currently tend to use. We restricted our search to articles published in 2021 because we are

interested in current trends. A Google Scholar search for English-text articles published in

2021 with the term “network scale-up” initially yielded 109 references. We further refined the

results to articles that used or reviewed a specific model when discussing size or prevalence

estimation for hidden populations. We excluded papers that talked only briefly about the

general NSUM approach and only cited papers without referencing specific equations/models,

as well as preprints, social network size estimates, and references for which we were unable

to track down the paper itself. This procedure resulted in a final set of eight papers. None

of the resulting references use the dRpA.

Table 1: Articles published in 2021 in journals or conference proceedings that either analyzed
data using a NSUM model or discussed a specific NSUM model. Related papers are included
in the same row, where the title refers to the first citation.

Citation Title NSUM

Models

Jami et al.

(2021a) Jami

et al. (2021b)

Population Size

Estimation of Drug

Users in Isfahan City

(Iran) Using Network

Scale-up Method in

2018

dRpR; Scaling

Factors
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Balvardi et al.

(2021)

Investigating the

Prevalence of

Substance Use

Among Students of

Medical Science

Universities in the

Eighth Macro-region

of Iran

dRpR

Baneshi et al.

(2021)

Estimating the Size of

Hidden Groups

Basic; Scaling

Factors

Baquero et al.

(2021)

Garcia-Agundez

et al. (2021)

The CoronaSurveys

System for COVID-19

Incidence Data

Collection and

Processing

dRpR

Ocagli et al.

(2021)

Using Social

Networks to Estimate

the Number of

COVID-19 Cases:

The Incident (Hidden

COVID-19 Cases

Network Estimation)

Study Protocol

Maltiel et al.

(2015); Modified

Version of

Maltiel et al.

(2015);

References

dRpR, but does

not apply
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Sakhno et al.

(2021)

Estimating the size of

key populations,

bridge populations

and other categories

in Ukraine, 2020: the

network scale up

method

dRpR; Scaling

Factors

S3 The binomial and Erdös-Renyi models

Given a set of nodes, a graph can be simulated from an Erdös-Renyi model by conducting

an iid Bernoulli trial `ij for each pair of nodes to determine whether there is a link between

them:

`ij
iid∼ Bernoulli(p)

Here we will suppose that the nodes have group memberships (either hidden or not hidden),

but that these memberships do not impact link formation.

We can then derive random variables for the number of people each person i knows who

are in the hidden group:

yi =
∑

j∈H,j 6=i

`ij ∼





Binom (NH , p) i /∈ H,

Binom (NH − 1, p) i ∈ H,

and the number of people each person i knows who are not in the hidden group:

zi =
∑

j /∈H,j 6=i

`ij ∼





Binom (N −NH − 1, p) i /∈ H,

Binom (N −NH , p) i ∈ H.
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Let N∗H = NH if i /∈ H and NH − 1 if i ∈ H. Let N∗L = N −NH − 1 if i /∈ H and N −NH

if i ∈ H. Note that N∗H +N∗L = N −1 in either case, so N∗L = N −N∗H−1. The distributions

also simplify notationally to

yi ∼ Binom (N∗H , p) , zi ∼ Binom (N∗L, p) .

These two variables are independent of one another for a given person, and their sum is

that person’s degree:

di = yi + zi.

Consider two people i and j. Their degrees are not completely independent because

there is one potential link between them, so their degrees (sums of potential links) each

include `ij. Additionally, their responses are not independent if they are both in the hidden

group, because in that case yi and yj both correspond to sums that include `ij. Therefore,

their conditional responses yi|di are not strictly independent of one another. However, for

sufficiently large N and NH this departure from independence is negligible.

The following derivation demonstrates that yi|di follows a hypergeometric distribution:

p(yi = y | di = d) =
p(yi = y, di = d)

p(di = d)

=
p(yi = y, zi = d− y)

p(di = d)

=
p(yi = y)p(zi = d− y)

p(di = d)
yi, zi indep

=
p(yi = y)p(zi = d− y)∑di

k=0 p(di = d | yi = k)p(yi = k)

=
p(yi = y)p(zi = d− y)∑d
k=0 p(yi = k)p(zi = d− k)

p(yi = y)p(zi = d− y) =

(
N∗H
y

)(
N∗L
d− y

)
py(1− p)N

∗
H−ypd−y(1− p)N

∗
L−d+y
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=

(
N∗H
y

)(
N∗L
d− y

)
pd(1− p)N−1−d

The only dependence on y appears in the binomial coefficients:

p(yi = y | di = d) ∝
(
N∗H
y

)(
N∗L
d− y

)
.

Therefore, yi|di follows a hypergeometric distribution for the number y of successes out of d

draws without replacement from a population of size N − 1 containing N∗H many successes.

For sufficiently large N and NH , the hypergeometric distribution of yi|di under the Erdös-

Renyi model converges to the binomial distribution of yi|di under the binomial model, and

the approximate independence of yi|di and yj|dj for different people i and j converges to

independence. In both models, the response yi can be interpreted as building person i’s

personal network by drawing one person simply at random from the population and counting

how many people were drawn that were in the hidden population; however, these draws are

modeled without replacement under the Erdös-Renyi model and with replacement under the

binomial model. Modeling without replacement seems more natural since people should not

be double-counted in a given person’s personal network.

The binomial model is an approximation for the conditional distribution of ARD re-

sponses in networks generated from an Erdös-Renyi model, and the approximation improves

as N and NH increase.

S4 Additional figures

Figure 1 examines the dependence of the region in which dRpA has lower RMSE on the

value of nN , the product of the sample size and the population size, when p = 0.01 and the

other parameters are allowed to vary. For nN as small as five or ten thousand, the dRpA no

longer has lower RMSE. The size of the region increases with nN , expanding to encompass

smaller values of R and a wider range of a.
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nN: 1e+05 nN: 5e+05 nN: 1e+06

nN: 5000 nN: 10000 nN: 50000
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Figure 1: The six subpanels here correspond to six different values of nN , the product of
the sample size and the population size. The size of the darkest region, the region in which
the dRpA has smaller RMSE than the dRpR, grows with nN (larger sample sizes and larger
populations). All assortative and Erdös-Renyi simulations for each value of nN are shown;
R ranges from 0.01 to 0.99, log(a) ranges from 0 to 4, pHL = 0.01, and rK ranges from 0.01
to 0.8.

nN: 1e+05 nN: 5e+05 nN: 1e+06

nN: 5000 nN: 10000 nN: 50000

0.000 0.025 0.050 0.075 0.100 0.000 0.025 0.050 0.075 0.100 0.000 0.025 0.050 0.075 0.100

0

1

2
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4
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3
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Smaller RMSE:
dRpR
dRpA
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Figure 2: As in Figure 1 but with pHL = 0.001 instead of 0.01. The size of the region in
which the dRpA has smaller RMSE than the dRpR is smaller for smaller p.
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rK: 0.5 rK: 0.8

rK: 0.01 rK: 0.1 rK: 0.2
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Figure 3: The size of the region in which the dRpA has smaller RMSE than the dRpR
depends on rK , the ratio of the probe group size to the population size, to a smaller extent
than on nN . The five subpanels here correspond to five different values of rK . All assortative
and Erdös-Renyi simulations for each value of nN are shown; R ranges from 0.01 to 0.99,
log(a) ranges from 0 to 4, pHL = 0.01, and nN ranges from five thousand to one million.

|Bias|/R SE/R RMSE/R
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1.25

dRpA

dR
pR

Figure 4: Comparing the bias (left panel), standard error (center panel), and RMSE (right
panel) of the dRpR and the dRpA in the 1,017 cases with degree ratios close to 1 (0.8− 1.2,
with darker points representing lower degree ratios) from the Facebook 100 simulations. The
diagonal line is the one-to-one line; points above the line have lower values for the dRpA
than the dRpR. Each point represents the average across 500 surveys of size 500 for one
combination of school network and hidden group. In these cases, the dRpA and dRpR have
comparable bias and RMSE and the dRpR tends to have smaller variance.
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0.00 0.25 0.50 0.75 1.00 1.25 0.00 0.25 0.50 0.75 1.00 1.25 0.00 0.25 0.50 0.75 1.00 1.25

0.00

0.25

0.50

0.75

1.00

1.25

dRpA

dR
pR

Figure 5: As in Figure 4 except for the 378 cases with “high” degree ratios (> 1.2). In this
setting, the dRpA tends to have lower bias and RMSE than the dRpR.

Figure 2 shows the same results as Figure 1 except for a smaller value of p, 0.001 instead

of 0.01. With smaller p, the region in which dRpA has smaller RMSE shrinks. Figure 3

shows that to a smaller extent, the size of this region also depends on the value of rK , the

ratio of probe group size to population size.

Figures 4 and 5 compare the dRpR and dRpA estimators for the cases with near-one and

high degree ratios, respectively. When the degree ratio is near one, the dRpA and dRpR

have comparable bias and RMSE and the dRpR tends to have smaller variance than the

dRpA. For cases with high degree ratios, the dRpA tends to have lower bias and RMSE

than the dRpR and their variance is comparable.
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