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Abstract
Estimating the size of hard-to-reach populations is an important problem for many

fields. The Network Scale-up Method (NSUM) is a relatively new approach to esti-
mate the size of these hard-to-reach populations by asking respondents the question,
“How many X’s do you know,” where X is the population of interest (e.g. “How many
female sex workers do you know?”). The answers to these questions form Aggregated
Relational Data (ARD). The NSUM has been used to estimate the size of a variety
of subpopulations, including female sex workers, drug users, and even children who
have been hospitalized for choking. Within the Network Scale-up methodology, there
are a multitude of estimators for the size of the hidden population, including direct
estimators, maximum likelihood estimators, and Bayesian estimators. In this article,
we first provide an in-depth analysis of ARD properties and the techniques to collect
the data. Then, we comprehensively review different estimation methods in terms of
the assumptions behind each model, the relationships between the estimators, and
the practical considerations of implementing the methods. We apply many of the
models discussed in the review to one canonical data set and compare their perfor-
mance and unique features, presented in the supplementary materials. Finally, we
provide a summary of the dominant methods and an extensive list of the applications,
and discuss the open problems and potential research directions in this area.
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1 Introduction

Estimating the size of hard-to-reach populations is an important problem in a variety of

contexts. Governments and humanitarian organizations which aim to eradicate infectious

diseases and improve the lives of citizens through treatment programs are interested in

population sizes because the treatment target needs to be clear and funds need to be

allocated correctly. The Joint United Nations Programme on HIV and AIDS (UNAIDS)

aims to limit the spread of HIV by locating large HIV populations. Groups that are

particularly vulnerable are known as target- or key-populations. For example, female sex

workers (FSW) are among the highest subpopulation living with HIV. It is difficult to

estimate the size of FSW directly because of social stigma around sex work and because

FSW comprise a relatively small percentage of the general population. Existing approaches

to estimate these hard-to-reach populations include mark-recapture, mapping, and venue-

based surveys. See Bernard et al. (2010) for a detailed list of population size estimation

methods and Sabin et al. (2016) for a comparison of the availability and quality of different

data types when estimating certain key subpopulations.

A relatively new method for estimating the size of key populations is the Network Scale-

up Method (NSUM), based on the basic scale-up model (Bernard et al., 1989). The authors

were in Mexico soon after an earthquake and were interested in estimating the number of

people who had died in the earthquake. In this case, where the target population is people

who have died from an earthquake, many existing methods were impossible to implement.

One author asked people around Mexico City how many people they knew who had died in

the earthquake. By leveraging only the responses about how many people each respondent

knows, they were able to estimate the number of people who died from the earthquake.

The NSUM uses questions from “How many X’s do you know?” surveys to estimate both
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average network size and subpopulation sizes.

The method provides a relatively cheap, easy, and powerful tool for researchers and can

still be applied when it is impossible or difficult to reach the target population directly.

Furthermore, the NSUM respects the privacy of the respondents since respondents are not

asked about their own characteristics or identifying information of their alters. UNAIDS

and WHO published guidelines for the NSUM and noted that the NSUM is advantageous

because respondents do not need to reveal their own status, questions can be added to

existing household surveys, and sizes of multiple subpopulations can be estimated from one

survey (UNAIDS and WHO, 2010). Furthermore, obtaining data through NSUM can be

70 − 80% cheaper than collecting traditional network data (Breza et al., 2017). However,

due to biases from violating method assumptions, the UNAIDS and WHO designated

the NSUM as a method “under-development” for estimating hard-to-reach populations

(UNAIDS and WHO, 2010), prompting the need for further development.

Here we standardize the notation we will use for the rest of the paper and provide a

brief introduction to relevant network and NSUM terminology and notation to streamline

reading of later sections. Aggregated relational data (ARD) refers to the data collected

using “How many X’s do you know?” questions, while NSUM refers to the process of

estimating network size or subpopulation size using ARD. Let N be the size of the general

population, Nk be the size of subpopulation k, and n be the number of respondents. We

denote the ARD responses by yik, the number of people that respondent i reports knowing

in subpopulation k. The network size, or degree, for person i is di and for ARD, typically

represents the total number of individuals that the respondent recognizes by sight or name,

has contacted in the last several years, and can still contact. The degree is typically

equal to the number of edges connected to the respondent node in an undirected graph
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since the connections are generally assumed to be symmetric, although more precisely is

equal to the number of out-going edges from the respondent node in a directed graph (e.g.

respondents can still know people who have died in an earthquake). Let L be the number of

subpopulations with known sizes. For simplicity, we assume only one subpopulation size is

unknown, denoted by Nu, but stress that any number of subpopulations can be unknown in

practice. The popular McCarty ARD dataset (McCarty et al., 2001), contained 29 known

subpopulations which included 12 names (Michael, James, Kimberly), Native Americans,

commercial pilots, and homicide victims. The three unknown subpopulations were HIV

positive individuals, women raped in the past 12 months, and homeless individuals. Thus,

the responses from person i are denoted yi· = (yi1, . . . , yiL, yiu). The respondents to ARD

surveys are also known as the ego and the people to whom the ego can form ties are called

alters (Salganik et al., 2011b).

The basic idea behind NSUM relies on the assumption that the proportion of the sub-

population to the general population is equal to the proportion of the person’s network

that belongs to the subpopulation, i.e.

yik
di

=
Nk

N
(1)

If the degree di was known, then it would be easy to solve for Nk using Equation (1).

However, estimating the degree is a difficult problem in and of itself (Rogerson, 1997;

Dasgupta et al., 2014). A related topic is that of the “small-world problem,” which states

that only a small number of connections can connect any two people (Rogerson, 1997).

Estimating the average network size is also difficult because it is nearly impossible for

someone to recount their entire social network without substantial effort and network size

varies dramatically between individuals.

The model in Equation (1) works well under three strong conditions: 1. everyone in
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the population is equally likely to know someone in subpopulation k, 2. for every person

in a respondent’s network, the respondent knows every subpopulation the person belongs

to, and 3. respondents are able to fully recall everyone in their social network in the

allotted time. These assumptions are commonly violated in practice. Barrier effects cause

individuals to be more or less likely to know individuals in certain subpopulations, violating

condition 1. Transmission errors block individuals from knowing everything about people

in their social networks, violating condition 2. Recall errors result when people are unable

to quickly count or remember everyone in their social network that belongs to a certain

group, violating condition 3 (Bernard et al., 1989; Johnsen et al., 1995; Killworth et al.,

1998b; McCarty et al., 2001). We further explore each of these violations in later sections.

There are currently two software packages to analyze ARD using the NSUM, both imple-

mented in R (R Core Team, 2019). The first, NSUM (Maltiel and Baraff, 2015), implements

the models proposed by Maltiel et al. (2015). The second, networkreporting (Feehan

and Salganik, 2014), fits the generalized network scale-up model proposed by Feehan and

Salganik (2016).

During the writing of this review, another review of the network scale-up method was

published in The Oxford Handbook of Social Networks (McCormick, 2020). Like the review

presented here, the author introduces the NSUM in the context of ARD, delineates the

assumptions and pitfalls of the method, and introduces the proposed models to improve

the method. While McCormick (2020) walks through the history of the NSUM primarily

through the lens of NSUM applications, we instead reflect on NSUM through the modeling

perspective. To this end, our review allocates more space to model properties and the

complete network models while McCormick (2020) spends more time discussing designing

and analyzing an ARD survey. In addition, we apply many of the models discussed in
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this review to one canonical data set and compare their performance and unique features.

Read together, these two reviews provide a near-complete picture of the current NSUM

and ARD literature.

The rest of this manuscript is organized as follows. First, we offer a background to

ARD and explore the features of the data and problems that arise when collecting ARD.

Then, in Section 3, we provide introductions to all significant NSU models. This section

is divided into three subsections. In Section 3.1, we discuss the frequentist network scale-

up estimators. These basic estimators are the most frequently used in practice due to

their ease of use, but also include more complex models with increased flexibility. In

Section 3.2, we introduce the Bayesian estimators. These models are reported to have

improved the basic methods by better accounting for the sources of bias, but are also

more difficult to use since they rely on Bayesian sampling algorithms. In Section 3.3, we

review recent estimators that estimate complete network properties using only ARD. After

discussing specific models, Section 4 introduces modifications to model estimates. These

approaches recognize limitations of the modeling procedures and further calibrate estimates

using empirical studies. Final discussion is found in Section 5.

2 Properties of Aggregated Relational Data

Before discussing the various NSUM models, it is important to look at the properties of

ARD in more detail. Specifically, there are four key biases that plague ARD: 1) Transmis-

sion errors, 2) Barrier effects, 3) Recall errors, and 4) Response biases. As with any survey,

ARD can suffer from poor sampling behavior. Recall errors and response biases depend

on the survey implementation, while transmission errors and barrier effects depend on the

6



subpopulations and respondents.

2.1 Transmission Error

A response suffers from transmission error when the respondent is unaware that someone in

their network belongs to a subpopulation (Killworth et al., 2006). The transmission error

violates the assumption that respondents have perfect knowledge of which subpopulations

their alters belong to and varies widely between different subpopulations (Killworth et al.,

2006; Zheng et al., 2006; Maltiel et al., 2015).

Shelley et al. (1995) studied transmission error by interviewing respondents in key

subpopulations. HIV-positive respondents reported that only 49% of their relatives were

aware of their HIV-status. However, note that transmission error also exists for easy-to-

reach populations. A large percentage of diabetics, twins, Native Americans, and widows

and widowers all reported not revealing their status to some members of their social network

(Killworth et al., 2006). Focus has primarily been on accounting for the transmission rate

of the hard-to-reach subpopulations, although ignoring the transmission rate of the known

subpopulation may also significantly influence estimates.

In some cases, researchers can estimate the transmission rate, τ , of a subpopulation.

Also frequently called the visibility factor, τ represents the fraction of a respondent’s net-

work that is aware the respondent is in the hidden subpopulation. The methods to esti-

mate the visibility factor include expert opinion, comparison of NSU with proxy respondent

method, social respect, coming-out ratio, and game of contacts (Haghdoost et al., 2018).

Thus, in addition to collecting the ARD, researchers can also collect additional data to

estimate the visibility factor. To the best of our knowledge, there has been no study that

compares the accuracy of the different methods to estimate the visibility factor.
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2.2 Barrier Effect

Barrier effects violate the constant proportion assumption because respondents can be

more or less likely to know someone in a subpopulation due to their own characteristics,

and are not limited to hard-to-reach populations. (Shelley et al., 1995; Killworth et al.,

2006; Shelley et al., 2006; Salganik et al., 2011a). For example, respondents were more

likely to know people with whom they shared their race.

The reasons for barrier effects can be both geographical as well as social. For example,

the number of Native Americans that a respondent knows is highly correlated to the state

in which they reside. On the other hand, doctors are much more likely to know other

doctors, regardless of where they live (Killworth et al., 2006). The influence that barrier

effects can have on model estimates can be reduced by obtaining a representative sample

of the population of interest. Killworth et al. (2006) cited a study that estimated an

unusually high HIV-positive prevalence when compared to national surveys because the

original study interviewed only Florida residents, increasing the influence of barrier effects.

Unlike transmission error, there does not appear to be any feasible way of estimating barrier

effects directly without studying every characteristic of each respondent, since barrier effects

depend on both the respondent and the subpopulation considered.

2.3 Recall Error

Recall error occurs when respondents inaccurately recall the number of alters they know in

a subpopulation (Killworth et al., 2003, 2006; McCormick et al., 2007; Maltiel et al., 2015).

In many studies, respondents have only about 30 seconds to recall everyone in their social

network that belongs to a subpopulation (Killworth et al., 2003). Thus, respondents will
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undercount or overestimate the true number of alters. Little if any research has been done

one how many people respondents can recall (Killworth et al., 2003). Furthermore, given

that a respondent has recalled i of n possible alters, the probability that they recall another

member decreases as i increases. Recall bias may also increase as the survey progressing,

meaning later questions will suffer from larger recall error (McCarty et al., 2001).

Researchers found that respondents typically overcounted the number of alters in small

subpopulations and undercounted the number of alters in large subpopulations (Killworth

et al., 2003; Zheng et al., 2006; McCormick et al., 2007). Killworth et al. (2003) proposed

a formula to study the relationship between the estimated degree and the rates at which

respondents over and undercount. For large subpopulations, respondents have also been

observed to round their responses, typically answering in multiples of 5, but enumerate the

individuals in their social network for small subpopulations (McCarty et al., 2001; Killworth

et al., 2003). For the large subpopulations, respondents relied on “feel” (McCarty et al.,

2001). This means that even for subpopulations with low transmission error, like those

based on names, the recall error may be larger than for other subpopulations. Little work

has been done to reduce these recall errors when collecting ARD.

2.4 Response Bias

Response bias refers to respondents deliberately misreporting the number of individuals

they know in the subpopulation. Respondents may be hesitant to report members of

stigmatized subpopulations are in their social network. For example, respondents were

hesitant to admit knowing FSW (female sex workers) in household settings (Jing et al.,

2018). Thus, response bias can reasonably be reduced at the data-collection stage by

making respondents feel comfortable enough to truthfully answer the survey.
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Snidero et al. (2009) studied how the survey design and implementation affected re-

sponse bias. The authors showed that question order likely did not seem to be an im-

portant factor in producing reliable estimates of degree and subpopulation size. However,

individual interviewers did have a significant effect on whether interviews were interrupted,

refused, or contained missing fields. Therefore, in order to reduce variability of the ARD

and provide consistent estimates, it is most important to provide the interviewers with

sufficient training.

NSUM was also combined with the randomized response technique (RRT) to reduce

response bias (Jing et al. (2018)). RRT aims to increase the likelihood that a respondent

answers sensitive questions by splitting respondents into two groups and randomly asking

the respondents either a sensitive or unrelated survey question and ensuring the respon-

dents that only the respondent knows which question they are answering. Since only the

respondents knew which question was asked, the researcher must use only the proportion

of the sensitive and unrelated questions to calculate the mean response to the sensitive

question. Respondents were much more likely to answer the sensitive question truthfully

under RRT, leading to reliable NSUM estimates. (Jing et al., 2018). Note, however, that

the RRT provided only the average number of FSW that the respondents knew. Thus, the

RRT can only be combined with the scale-up estimates that rely on the average number of

individuals known in a subpopulation, rather than the number known for each respondent.

Based on the current trend of NSU estimators in Section 3, the RRT is useful only for the

most basic estimators.
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3 Models

In this section, we will discuss the different ARD models. These models can be loosely

categorized into three groups: 1) frequentist models which provide subpopulation size esti-

mates, 2) Bayesian models which handle the biases through the prior distributions, and 3)

complete network models which focus on estimating network properties using only ARD.

Within each subsection, models will be introduced chronologically. Key theoretical prop-

erties of the models will also be discussed, although for brevity, full model properties are

left to the original publications.

3.1 Frequentist Models

3.1.1 First NSUM Model

Bernard et al. (1989) first proposed the Network Scale-up Model to study the number of

people who had died in the 1985 Mexico City earthquake. The authors derived bounds

for the average network size and point estimates for the unknown subpopulation size and

Bernard et al. (1991) provided additional empirical results from a larger survey. We focus

here on the subpopulation size estimates. While the estimator for subpopulation size is

limited in application, it provided a powerful stepping stone for future estimators. The

first probability estimator makes no assumption for the distribution of the ARD responses,

but notes that the probability of the event that a random respondent knows no one in

subpopulation k (denote this event Wk) is given by

P (Wk) =
dmax∑

m=dmin

P (Wk|yik = m)P (yik = m), (2)
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where the degrees can vary over the integers from dmin to dmax. The authors then assume

that either for a random respondent not in the subpopulation k, the respondent’s social

network is equally likely to have been any subset of size di from the general population,

or that all subsets of the general population of size Nk were equally likely to be k. Using

either of these assumptions and several steps of algebra, the authors show that there exists

a real number g, 1 ≤ g ≤ dmax, such that

P (Wk) =
dmax∑

m=dmin

(1−Nk/(N − g))mP (yik = m) ≈
dmax∑

m=dmin

(1−Nk/N)mP (yik = m), (3)

where the approximation holds since g is small with respect to N . Now consider (3) for

subpopulations 1 to L, with corresponding values ε1 = 1−N1/N to εL = 1−NL/N . Since

P (Wk) is an increasing function with respect to εk = 1 − Nk/N , if 1 > ε1 > ε2 > · · · >

εL, then 1 > P (W1) > P (W2) > · · · > P (WL). Therefore, if P (Wu) for the unknown

subpopulation u is such that P (Wj−1) > P (Wu) > P (Wj), the subpopulation size is also

bounded, where

1− Nj−1

N
> 1− Nk

N
> 1− Nj

N
=⇒ Nj−1

N
<
Nk

N
<
Nj

N
. (4)

Thus, this procedure provides an upper and lower bound for the size of the unknown

subpopulation.

3.1.2 Maximum Likelihood Estimator Models

In order to derive more precise size estimates, Killworth et al. (1998a) proposed a Binomial

likelihood based estimator. Overall, six different estimators were proposed to model both

personal network size and subpopulation size, but the maximum likelihood based estima-

tor proved the most useful for subpopulation size estimation and was later extended into
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the most frequently used NSU estimator. The estimator, which we call the plug-in MLE

(PIMLE), works by first maximizing the following likelihood with respect to di:

L(di; y) =
L∏
k=1

(
di
yik

)(
Nk

N

)yik (
1− Nk

N

)di−yik
. (5)

When Nk are small relative to N and yik are small relative to di, the maximum likelihood

estimate of di is given by

d̂i = N ·
∑L

k=1 yik∑L
k=1Nk

. (6)

Plugging in these d̂i into (1) yields respondent-level subpopulation estimates N̂
{i}
u = N ·

yiu/d̂i. The results are then averaged into a single estimate for Nu,

N̂PIMLE
u =

1

n

n∑
i=1

N · yiu
d̂i
, (7)

where each term inside the summation is the estimated unknown subpopulation size from

respondent i. Note that the degree estimate for each respondent depends only on the

responses from that respondent and the known subpopulation sizes. Then, each respondent

is weighted equally in the final summation. It was shown that d̂i is unbiased. Furthermore,

Monte Carlo simulations showed 1/d̂i is essentially unbiased for 1/di and the back-estimates

for Nu were essentially unbiased when more than 20 subpopulations with known sizes were

used for verification (Killworth et al., 1998a). Note that no statement about the bias

or standard error of N̂PIMLE
u can be made since the final plug-in does not make any

distributional assumptions.

Killworth et al. (1998b) proposed a modified version of the estimate in (7), which

has become the most frequently used NSU estimator for unknown subpopulation size.

Studies typically refer to this as the maximum likelihood estimator (MLE). Instead of
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back-estimating Nu using (1), the MLE method instead maximizes the binomial likelihood

L(Nk; y, {di}) =
n∏
i=1

(
di
yiu

)(
Nu

N

)yiu (
1− Nu

N

)di−yiu
(8)

with respect to Nu, where the di are fixed at the estimated d̂i from (6). Thus, the final

estimate is still uses the known subpopulation to estimate the degrees, but estimates Nk

by maximizing a likelihood instead of solving the equality of two ratios. The new MLE for

Nu is then easily found to be

N̂MLE
u = N ·

∑n
i=1 yiu∑n
i=1 di

=
n∑
i=1

yiu

∑L
k=1Nk∑n

i=1

∑L
k=1 yik

. (9)

The critical difference in the unknown subpopulation estimate is that the PIMLE aver-

ages Nk estimates from each respondent while the MLE maximizes a likelihood using all

respondent data simultaneously. The estimate N̂u is unbiased and assuming the Nu/N is

sufficiently small, the authors show the standard error is given by

SE(N̂MLE
u ) =

√
N ·Nu∑n
i=1 d̂i

, (10)

which decreases as the network sizes di increases. When the degrees are small or prevalence

is relatively large, the standard error in (10) will be inaccurate.

3.1.3 Weighted Estimators

The MLE estimate of Killworth et al. (1998b) implicitly values information from large

known subpopulations more than small known subpopulations. In order to weight the

subpopulations equally, the mean of sums (MoS) estimator first estimates the di based

on each subpopulation, averages those d̂i’s, and then back-estimates Nu based on the d̂i’s
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(Habecker et al., 2015). Thus, the estimate for network size di is given by d̂i = (N/L) ·∑L
k=1 yik/Nk, which then yields the back-estimate for N̂u,

N̂MoS
u =

N

n
·

n∑
i=1

yiu

d̂i
. (11)

Note that N̂MoS
u has the same form as N̂PIMLE

u , but relies on a different method to calculate

the d̂i. The MoS estimator was first proposed in Killworth et al. (1998a), but the authors

noted that the variance of the estimate is extremely large when one or more of the known

subpopulations are small. Habecker et al. (2015) proposed controlling this variance by

choosing subpopulations of similar size.

Habecker et al. (2015) also proposed improving the the MLE and the MoS estimator

by incorporating weights to adjust for survey characteristics, like probability of selection.

Thus, the weighted MLE (9) and the weighted MoS estimator (11) are given by

N̂WMLE
u = N ·

∑n
i=1 yiuwi∑n
i=1 di

(12)

and

N̂WMoS
u =

N

n
·

n∑
i=1

(yiuwi)/d̂i, (13)

respectively.

3.1.4 Generalized Scale-up Estimators

Feehan and Salganik (2016) developed the generalized scale-up estimator (GNSUM) to

estimate the size of a hard-to-reach subpopulation by using the network property that the

total number of in-reports equals the total number of out-reports (i.e. if person i reports

they know trait k about person j, then person j reports that person i knows trait k about

them). The new estimator also requires additional data collected from the hard-to-reach
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subpopulations called enriched ARD. Enriched ARD is collected by asking members of the

unknown population “How many X’s do you know?” and then “How many of these X’s

are aware that you belong to population Gu?” Clearly one limitation of the generalized

network scale-up estimator is that it requires directly sampling from the hard-to-reach

subpopulation. However, by leveraging the additional information from the enriched ARD,

the generalized scale-up estimator can provide more accurate network and subpopulation

size estimates.

First, let the hard-to-reach population Gu of size Nu be a subset of the entire population

G. In practice, researchers sample from GF , which is a separate subset of G called the frame

population. Then, let yiu be the number of out-reports from respondent i to subpopulation

Gu, i.e. how many people respondent i knows in subpopulation Gu. Furthermore, let vi,G

be the number of in-reports to respondent i from the entire population, also known as the

visibility of person i to people in G. Thus, if we define yG,u =
∑

i∈G yiu to be the total

number of in-reports and vG,G =
∑

i∈G vi,u to be the total number of out-reports, then

yG,u = vG,G. Multiplying both sides by Nu, we can write Nu = yG,u/(vG,G/Nu). This must

also be the case for the frame population, i.e. Nu = yF,u/(vG,F/Nu). Then, the estimate

N̂GNSUM
u is found by estimating the numerator and denominator separately, i.e.

N̂GNSUM
u =

ŷF,u
ˆ̄vu,F

. (14)

The numerator is found using the ARD, where ŷF,u =
∑

i∈sF yiu/πi, sF is the sample

population, and πi is the probability that respondent i is included in the sample from the

frame population GF . The enriched ARD is used to find ˆ̄vu,F , but the exact details of the

estimator are complicated, and for brevity we leave the description of the estimator to the

original manuscript.

Feehan and Salganik (2016) make several important connections between their model
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and the MLE estimator. First, the authors show that the GNSUM is equal to the MLE

times several adjustment factors, and the MLE is only correct when all adjustments factors

are equal to 1 while the generalized scale-up is correct regardless. Procedures for estimating

the adjustments factors are provided in the original manuscript. This decomposition also

leads an expression for the bias of the MLE. This bias expression can be used to adjust

MLE estimates if the adjustment factors are known or estimated.

Recently, Verdery et al. (2019) extended the generalized network scale-up estimator to

allow venue-based sampling designs instead of the link-tracing samples from the original

approach, producing the venue-based generalized scale-up estimator (VB-GNSUM). The

generalized NSU estimator is difficult to use with venue-based sampling because estimating

ˆ̄vu,F requires the probability that an individual was included in the sample and because

venue-based sampling produces only one sample, rather than the two samples needed for

the traditional estimator. Verdery et al. (2019) use the same estimator in Equation 14, but

develop new ways to estimate the numerator and denominator.

3.2 Bayesian Models

While the original NSUM literature acknowledged that network sizes varied greatly between

individuals and the biases influenced the results, the basic models made it difficult to ac-

count for these factors and thus relied on averaging estimates. After the initial development

of the NSUM, a wave of Bayesian models dominated the topic, allowing the parameters

to vary between individuals and subpopulations and relying on posterior estimates. The

Bayesian approach inherently allows us to also consider the joint distribution between Nu

and the other model parameters.
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3.2.1 The Overdispered Model

Zheng et al. (2006) proposed the first Bayesian model for ARD. Noting that there was large

overdispersion in the data, likely a result from barrier effects and varying network sizes,

Zheng et al. (2006) proposed the overdispersed model, given by

yik ∼ Poisson(eαi+βk+γik). (15)

The parameter ai = eαi represents the expected degree of respondent i, bk = eβk represents

the proportion of total links that involve subpopulation k, and γik allows for extra variability

in the model not accounted for by αi and βk. Thus, if the γik are constant, the number

of people that respondent i knows in subpopulation k is dependent only on the number of

people that respondent i knows and the relative prevalence of subpopulation k. If, however,

γik varies widely across the k, then this suggests the presence of one or more of the ARD

biases. The flexibility and hierarchical formulation differentiates the Bayesian models from

the frequentist models by allowing for more variation in the responses. It is difficult for

the frequentist models to accommodate large changes in how likely each respondent is to

know someone in each subpopulation. The addition of an overdispersion parameter allows

two respondents with equal degrees to have very different responses, which is often seen in

the data.

The authors let gik = eγik follow a gamma distribution with mean 1 and shape parameter

1/(ωk − 1), which integrated to the following negative binomial model:

yik ∼ negative-binomial
(
mean = eαi+βk , overdispersion = ωk

)
, (16)

where E(yik) = eαi+βk and V ar(yik) = ωke
αi+βk .

Note that the αi’s and βk’s are nonidentifiable.Left untouched, this means that an

increase in the expected degree of person i is equivalent to a decrease in the proportion of
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total links that involve group k. The authors chose to leave the nonidentifiability in the

model and instead renormalize the log(βk)’s using the rare names (those believed to have

the least bias) after running the MCMC chain. Full details of the renormalization process

can be found in Zheng et al. (2006).

The main motivation and utility of this paper is the relationship between the subpop-

ulations and the overdispersion, ωk. Figure 4 of the original manuscript provides a nice

visual summary of the overdispersion estimates. For the considered data-set, the model

showed that the “homeless” and “member of Jaycees” populations had some of the highest

overdispersions while the names had some of the lowest. This means that the number of

homeless and Jaycees that a respondent knew varied highly between respondents, while the

propensity for respondents to know someone named “Stephanie,” for example, was roughly

equal. The authors pointed out that homeless populations are both “geographically and

socially localized,” explaining the largest range of propensities between respondents.

3.2.2 The Latent Profile Models

McCormick et al. (2010) note that the normalization procedure of Zheng et al. (2006) does

not ensure the degrees are estimated accurately since the transmission errors and the barrier

effects can still bias the degree estimates. Thus, the authors propose introducing latent

nonrandom mixing to account for the biases. Unlike previous models, the McCormick et al.

(2010) model estimates the propensity for respondents in ego group e to know members

of alter group a. In their case-study, the authors chose ego and alter groups by crossing

gender and age (e.g. males aged 25-64 comprised one ego group), but the ego and alter

groups need not match. The initial model is given by

yik ∼ negative-binomial (mean = µike, overdispersion = ω′k) (17)
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where µike = di
∑A

a=1m(e, a)Nak/Na is the mean, Nak/Na is the proportion of subpopula-

tion k within alter group a, and A is the total number of alter groups. m(e, a) is the mixing

coefficient between group e and alter group a, where

m(e, a) = E

(
dia

di =
∑A

a=1 dia
|i in ego group e

)
, (18)

and dia is the number of respondent i’s alters that belong to subpopulation a. Note that the

ego groups and the alter are both exhaustive and mutually exclusive. So for any ego group

e, we have
∑A

a=1m(e, a) = 1. The proposed model in Equations (17)-(18) accounts for

the barrier effects but still suffers from recall bias. To account for recall bias, the authors

add a calibration curve derived in McCormick et al. (2007) to the mean of their negative

binomial model, i.e. replace the previous mean with

µike = dif

(
A∑
a=1

m(e, a)
Nak

Na

)
, (19)

where the full details of the calibration curve f(x) can be found in the original manuscript.

The authors also provide suggestions for designing future ARD surveys. The Killworth

et al. (1998a) degree estimates are equivalent to the degree estimates from the above model

in expectation if either (1) there is random mixing; or (2) the known subpopulations rep-

resent a scaled-down population, i.e.∑L
k=1Nak∑K
k=1Nk

=
Na

N
. (20)

In words, McCormick et al. (2010) explain that “if 20% of the general population is females

under age 30, then 20% of the people with the [subpopulations] used also must be females

under age 30.” The utility of this requirement is that if the ARD survey is well-designed,

then simple models can have the same accuracy as more complicated models. Strategies
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for designing such a survey and guidelines for understanding the standard error of the

estimates are also provided in the original manuscript.

Note, however, that the McCormick et al. (2010) model does not estimate the size of

unknown subpopulations, focusing instead on estimating the individual degree and the dis-

tribution of network sizes. In a follow-up paper, McCormick and Zheng (2012) extended the

McCormick et al. (2010) model to estimate the unknown subpopulation sizes via MCMC.

Via a two-stage estimation procedure, the authors first use the subpopulations where size

is known to fit the model in (17) and (19) and then estimate the latent profiles for unknown

subpopulation conditional on the estimated values.

3.2.3 Maltiel et al. (2015)

Maltiel et al. (2015) introduced five additional models of increasing complexity to estimate

unknown subpopulation sizes from NSUM data and implemented the models in the NSUM

R package (Maltiel and Baraff, 2015; R Core Team, 2019). Figure 1 in Maltiel et al. (2015)

contains a helpful flowchart detailing the four basic proposed models. We discuss only the

most complex version of the model and direct the reader to the original manuscript for the

other models.

In order to address barrier effects, transmission effects, and recall error, Maltiel et al.

(2015) proposed the recall adjustment model, given by

yik ∼ Binom (di, e
rkτkqik) , (21)

where di ∼ log-normal(µ, σ2), rk ∼ N(a+b log(Nk), σ
2
r), qik ∼ Beta(mean = mk, dispersion =

ρk), and τk ∼ Beta(mean = ηk, dispersion = νk). The parameters rk handle the recall error,

qik handle the barrier effects, τk (fixed at 1 for known subpopulations) handle the transmis-

sion effects, and di represents the varying degree between respondents. Furthermore, the
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hyperparameters mk are set to mk = Nk/N . Full prior settings for the hyperparameters

are omitted here for clarity. The advantage of this model is that the parameters are clearly

separated into the degree and the bias terms. Thus, the response yik is influenced both by

the number of people that respondent i knows as well as the subpopulation size and the

biases. Estimating the transmission effect τk for the unknown subpopulation requires some

estimate of the visibility factor from additional data sources, for example via the game of

contacts.

Ultimately, the authors noted that this complex model was difficult to estimate and

proposed removing the rk parameters and accounting for the recall error post hoc. As oth-

ers have shown (Killworth et al., 2003; Zheng et al., 2006; McCormick et al., 2007, 2010),

respondents seemed to over-report the number of people they knew in small subpopula-

tions and under-report for large subpopulations. The post hoc adjustments are similar to

approaches used by others, so details of the adjustments are provided in Section 4.2.

3.2.4 Teo et al. (2019)

In order to account for transmission error and barrier effects, Teo et al. (2019) proposed

two new models that include respondent demographics as regression coefficients. Some of

the covariates capture overall respondent characteristics, like age and sex. These covariates

can be used to capture additional trends in the response. Other covariates measure the

perception that each respondent has for each subpopulation. The main idea is if a respon-

dent views a subpopulation poorly, then they are less likely to know individuals from that

subpopulation. The transmission error model assumes a Poisson distribution for the ARD

given by

yik ∼ Poisson (λαi exp{βk[xi,k − Uk]}Nk) , (22)
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while transmission error and barrier effect model is then given by

yik ∼ Poisson

(
λαi exp{βk[xi,k − Uk]} exp

{
p∑
j=1

γj,kzi

}
Nk

)
, (23)

where U represents the upper bound of the Likert scale, xi,k is respondent i’s response to

the question, and z = (z1, . . . , zn) represents the column-centered covariate matrix. Like

McCormick et al. (2010); McCormick and Zheng (2012), the model relies on respondent

characteristics, but treats them more as predictors in a regression framework rather than

discretizing the predictors jointly into groups.

3.3 Complete Network Models

Full network data is common in a variety of disciplines. For example, economists can

use full social networks to determine whether someone is more likely to save more money

when another individual monitors their saving progress (Breza and Chandrasekhar, 2019).

Recently, researchers have focused on using ARD as a substitute for full social network

studies since ARD is significantly cheaper and easier to collect. ARD has been estimated

to be 70-80% cheaper to collect that full network surveys (Breza et al., 2017). The question

that arises is if and when ARD can be used in place of full social network data. While this

line of research deviates significantly from the predominately population size estimation

focus of previous methods, we want to make the reader aware of this new research area.

Furthermore, to the best of our knowledge, ARD has not been studied in connection with

exponential random graph models.
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3.3.1 Latent Surface Model

ARD are ultimately partially observed or sampled network data. Thus, McCormick and

Zheng (2015) developed a latent surface model, a popular model for complete network data,

to analyze incomplete networks like ARD. The proposed model is based on the “projection

model” of Hoff et al. (2002), relaxing the complete graph model to handle the incomplete

nature of the ARD. In this framework, the propensity for person i and j to know each other

is proportional to the distance between person i and j in the latent geometry. The latent

geometry, in their case, is a p+1-dimensional hypersphere. Furthermore, for subpopulation

Gk, the collected ARD represents yik =
∑

j∈Gk
δij, where δij equals 1 if person i and j

know each other and 0 otherwise. Thus, if we denote the latent positions of i and j as

zi and zj∈Gk
, then the distribution of yik is approximately Poisson distributed with rate

λik =
∑

j∈Gk
P (δik = 1|Zi,Zj ∈ Gk). In the complete network case, j ∈ Gk are observed

and known, while for ARD they are unobserved, making it impossible to calculate λik

directly. Instead, the rate is approximated by

λik ≈ Nk

∫
Zj∈Gk

P (δik = 1|Zi,Zj ∈ Gk)P(Zj ∈ Gk)dZj ∈ Gk, (24)

where Nk is the size of Gk. After computing the expectation of the observed data and

reparameterizing the model in terms of di, the likelihood of the latent surface model for

ARD is found to be

yik|di, βk, ζ, ηk, θ(zi,νk) ∼ Poisson

(
diβi

(
Cp+1(ζ)Cp+1(ηk)

cp+1(0)Cp+1

(√
ζ2 + η2k + 2ζηk cos(θ(zi,νk))

))) ,
(25)

where Cp+1(·) is the normalizing constant of the von-Mises Fisher distribution and θ(zi,νk) is

the angular distance between respondent i and the center of subpopulation k. The authors

propose a Metropolis MCMC algorithm to sample draws from the posterior distribution.
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The latent surface model is closely related to the overdispersed model in Zheng et al.

(2006), and McCormick and Zheng (2015) offer a more detailed comparison of the two

models. As opposed to the overdispersed model, the latent surface model can put two

subpopulations on opposite sides of a latent sphere despite the two subpopulations having

similar sizes and dispersion. McCormick and Zheng (2015) observed from one data set that

individuals who reported knowing more people with AIDS also reported knowing more

religious individuals. This ability to view the relationship between subpopulations is the

main benefit of the latent surface model, but comes at the cost of increased computation.

3.3.2 Network Statistics

Breza et al. (2017) extended the latent surface models and showed that ARD can be used

to estimate node- or graph-level statistics under certain situations and provided insight into

when ARD is sufficient. Examples of these statistics are individual centrality and average

path length of the graph. The authors showed that they could reproduce the findings

of complete network studies using only ARD. As the focus of this paper is remarkably

different from our previous discussions, we refer the reader to the original manuscript for

model details.

Breza et al. (2019) further developed the theory behind why and when ARD is sufficient

to estimate model parameters for complete networks. One key result from their manuscript

is that under certain graphs and given a sufficiently large graph, certain parameter estimates

from ARD are consistent. The authors further develop a system to identify when ARD is

sufficient to recover graph statistics. While there are too many results to include here, ARD

proves to be an extremely useful tool to estimate graph statistics, especially considering the

cost savings and ease of implementation. If the interest is statistical inference of various
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population parameters of networks, network sampling methods (Bhattacharyya et al., 2015;

Green and Shalizi, 2017; Levin and Levina, 2019; Lin et al., 2020) might be an alternative

to ARD and NSUM.

4 Model Calibration

A significant portion of the NSU literature focuses on calibrating the crude estimates from

the NSU models in Section 3 through post hoc adjustments. The calibrations scale the

model estimates to correct for ARD biases. Calibrations exist for transmission errors and

recall errors, but no adjustments exist for barrier effects because of the aforementioned

difficulties in estimating the barrier effects. Note, the original adjustments discussed in

this section were typically developed for specific models, but the ideas can be often applied

to others, so we discuss them in a general setting.

4.1 Transmission Calibration

The two general approaches to account for transmission error are to use known subpopu-

lations that have low transmission error and to correct crude estimates using the visibility

factors. Using only low transmission error subpopulations for estimation does not require

any additional data sets and can be applied to most NSU studies. The visibility factor,

however, requires an additional sample to estimate and can generally only be used for the

hidden subpopulation of interest.

Transmission error can be reduced by using only known subpopulations that are un-

likely to have transmission error, like names (McCormick et al., 2010). It is unlikely that

a respondent reports knowing someone without also knowing their name, thereby remov-
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ing bias from the estimates of degree size. However, the approach does not eliminate the

transmission error present in the hard-to-reach subpopulation, where the unknown subpop-

ulation size estimates can still be biased.

More sophisticated methods for selecting the known subpopulations have also been

proposed. One approach is to back-estimate each known subpopulation using a leave-

one-out procedure and remove all subpopulations which are poorly estimated based on

the ratio between the back-estimate and the known size (Guo et al., 2013). Similarly,

Habecker et al. (2015) proposed trimming one subpopulation at a time by removing only

the worst performing subpopulation ratio in the leave-one-out back-estimates. This step-

wise trimming addresses the fact that all model estimates will change after removing any

subpopulation, so subpopulations that originally had poor performing ratios might actually

perform well after removing one other subpopulation.

The most common method to account for transmission bias is to scale the crude sub-

population size estimates by some scaling factor estimated from an additional data set.

The visibility factors are used to directly scale the subpopulation size estimates from the

NSU procedure by dividing the crude NSU estimate by the visibility factor. For example,

if only 50% of a female sex worker’s social network is aware that they are a female sex

worker, than the FSW subpopulation estimate is divided by 0.5 to account for the trans-

mission bias. Given a estimate of the visibility factor, this approach can be easily applied

to any estimator. However, only the unknown subpopulation size estimates are scaled and

not the degree estimates. Combining the visibility factor method with the only names

approach in McCormick et al. (2010) would likely lead to better degree and subpopulation

size estimates.
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4.2 Calibration Curve

While Shelley et al. (1995), Killworth et al. (2003), and Shelley et al. (2006) investigated

recall bias in ARD, accounting for the recall bias in the models proved difficult. However,

several approaches have been proposed, none of which require any additional data sets.

McCormick et al. (2007) were the first to propose a method to account for recall bias. In

order to account for models overestimating small subpopulations and underestimating large

subpopulations, the authors constructed a “calibration curve” which the authors believed

to match the relationship between subpopulation size and recall bias. The calibration curve

attempts to scale the recalled number of alters to be equal to the true number of alters in

subpopulation k. As defined in McCormick et al. (2007), let eβk be the proportion of ties

in the social network for subpopulation k, eβ
′
k be for the recalled social network, and then

define β′k = f(βk) to be the calibration curve. The calibration curve was first defined as

f(βk) = b+
1

2
(βk − b) +

1

2a

(
1− e−a(βk−b)

)
, (26)

where a controls how fast the derivative of this curve approaches 1/2 and b controls at

what value of βk the curve changes from correcting for over-reporting to under-reporting.

The parameters a and b are then estimated using the subpopulation size estimates without

any bias correction.

As mentioned in Section 3.2.3, Maltiel et al. (2015) proposed a similar calibration curve.

Their calibration works by first treating each known subpopulation as unknown one at a

time and estimating the size of that population, N̂k. Then, the errors-in-variables model

log
(
N̂k

)
= a+ b log(Nk) + δk + εk is fit via maximum likelihood to estimate a, b, and the

variances of δk and εk, where δk ∼ N(0, s2k) and εk ∼ N(0, σ2
ε ). Estimates of log(Nk) from

the posterior are then transformed using the estimated a, b, and an additional random
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Table 1: Brief summary of NSUM models.

Model
Primary

Objective

Requires

External Data

Requires Respondent

Covariates

Distributional

Assumptions
Bayesian

Bernard et al. (1989) and

Bernard et al. (1991)
Degree Estimation N/A

Killworth et al. (1998a) and

Killworth et al. (1998b)
Size Estimation Binomial

Zheng et al. (2006) Overdispersion/social structure Negative Binomial

McCormick et al. (2010) Degree Estimation 3 Negative Binomial 3

McCormick and Zheng (2012) Size Estimation 3 Negative Binomial 3

Habecker et al. (2015) Size Estimation Binomial

Maltiel et al. (2015) Size Estimation 3 Binomial 3

Feehan and Salganik (2016) Size Estimation 3 N/A

Verdery et al. (2019) Size Estimation 3 N/A

Teo et al. (2019) Size Estimation 3 Poisson 3

McCormick and Zheng (2015)
Complete

Network Statistics
Poisson 3

Breza et al. (2017)
Complete

Network Statistics
Poisson 3

Breza et al. (2019)
Complete

Network Statistics
N/A

noise. The transformation is given by

Y
[t]
k − a
b

+ Z, (27)

where Y
[t]
k is the t-th MCMC sample from the posterior distribution of log(NK) and Z ∼

N(0, σ2
ε/b

2).

5 Discussion

In this manuscript, we discussed the properties of ARD, explored the wide range of models

for ARD, and summarized common modifications to these model estimates. For a suc-

cinct summary, Table 1 lists these models, the primary objectives, and additional modeling

properties. Many of the models have multiple objectives and estimate several properties,
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so we record what appears to be the primary objective of the original manuscript. ARD

is an increasingly popular survey type for estimating the size of unknown subpopulations

due to its relatively cheap method of collecting network data and that individuals from

hard-to-reach populations do not need to be surveyed. There are several biases that make

modeling ARD difficult, but extensive research has been performed to improve the accu-

racy and precision of ARD. Recently, ARD has been used in place of full social networks

to estimate network properties, and this is a promising area of research that deserved more

attention. We include an extensive list of implemented and some proposed NSU studies in

the Supplementary Material. The additional abbreviations we use for the target subpop-

ulations are MCFSW (male client of a female sex worker), MSM (men who have sex with

men), RWOS (relationship with opposite sex), EPMS (extra/pre-marital sex), and PED

(performance enhancing drugs).

There are a variety of popular methods for estimating key populations, including cen-

sus/enumeration, capture-recapture, multiplier, and respondent-driven sampling. Popula-

tion size estimates from these methods and NSUM can vary widely, and in a study of heavy

drug users in Curitiba, Brazil, Salganik et al. (2011a) found the NSUM and the generalized

NSUM estimates were multiple times larger than the size estimates from comparable direct

and multiplier methods. While several reasons for the discrepancy were discussed, there

was no clear conclusion.

Respondent-driven sampling and NSUM are related through their reliance on respon-

dents’ social networks, albeit it this connection takes a different form in each method.

Respondent-driven sampling relies on the social networks of members of the target popu-

lation and specifically how connections the respondent knows that are also in the target

population. Thus, future responses depend highly on each respondent. This procedure
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makes it easy to sample directly from the target population, but may come at a cost. For

respondent-driven sampling, the standard error of the population size estimate may con-

verge at a much slower rate than expected as the number of participants increases Rohe

et al. (2019). Meanwhile, the NSUM relies on social networks of individuals from the gen-

eral population and each respondent is assumed to be independent of the others. These

factors suggest that the NSUM does not suffer from the same problems of convergence.

There are many desirable features of the more traditional estimation techniques, but like

NSUM, they all rely heavily on data assumptions. While multiple studies have compared

estimates from the more traditional estimation techniques and NSUM, there is still not

a clear consensus that any model out-performs the other. The main advantage of the

NSUM is respondents do not need to be from the target population. This is beneficial both

because it is often difficult simply to survey members from the target population, but also

because ARD surveys are cheap and can be implemented quickly. Furthermore, the NSUM

can easily estimate the size of impossible-to-reach population like those who have died in

an earthquake and estimate the size of multiple unknown subpopulations from the same

ARD survey with little extra cost. However, these features do not necessarily lead to more

accurate results, and estimates depend significantly on the design of the ARD survey as

well as the details of the implementation, like question order. Furthermore, NSUM relies

more heavily both on the truthfulness and accuracy of the respondent answers than some

of the other methods. Despite these limitations, NSUM models have developed to handle

many of the biases present in the data and additional information can be included in the

models, making NSUM an attractive and trustworthy method.

The models for ARD range from very simple MLE estimators to more complex latent

surface approaches. Each method has different purposes and assumptions in place, so
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we refrain from recommending any specific model. Furthermore, the performance of each

model has been shown to depend heavily on the sample and place of study. The practical

challenge of implementing these methods is also of importance. The frequentist estimators

are much easier to implement and have remained the most popular approaches. However,

the more complex models offer potential gains in accuracy as well as potentially additional

insight into the subpopulations. For example, at the cost of additional computation, the la-

tent surface model proposed in McCormick and Zheng (2015) can place two subpopulations

with similar dispersion parameters on opposite sides of the latent surface, indicating that

the subpopulations are socially distinct, while the Zheng et al. (2006) model estimates only

the dispersion parameters. This is not to say that the latent surface model outperforms the

overdispersed model, but rather that each model has a different niche. We implement many

of the models on a canonical ARD data set and present the results in the Supplementary

Material. In there, we compare the performance of various methods and comment on their

unique features.

ARD, and the extension of NSUM, is a promising area of research, and the models can

be extended beyond size estimation. One interesting approach already considered was to

invert the problem and estimate the ARD from known subpopulation sizes and degrees.

Moody (2005) estimated how many people know someone affected by the United States

war on terror. Furthermore, there are many hard-to-reach populations that can benefit

from the NSUM. Shelton (2015) proposed using the NSUM to estimate the prevalence of

sex trafficked individuals, noting how difficult it is to obtain a direct estimate. Another

promising extension of ARD is to consider other forms of “How many X’s do you know?”

questions. The generalized NSUM estimator requires enriched ARD. Asking additional

questions to the respondents may yield helpful information that can be used in a new esti-
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mator. Finally, Breza et al. (2017) suggest that ARD should move beyond social networks.

For example, the authors consider the question “How many links does the firm have to

firms with trait k?” This question takes a step away from social networks and generalizes

ARD to weighted and directed graphs.

The data and models still have limitations, of course. Estimates for known subpopu-

lation sizes are often significantly incorrect. Approaches for estimating the transmission

error are often expensive or impossible for certain subpopulations. Many approaches have

reduced response bias, but the success of these methods depends heavily on the unknown

subpopulation as well as where the study is implemented. Some papers report eliminating

the recall error in the data, but it is difficult to validate these approaches since little re-

search has been done on just recall error. Adjustments are based on leave-one-out estimates

of known subpopulations, but the discrepancy between these estimates and the truth are

not shown to be due to recall error.

With enough improvement, the NSUM will hopefully drop its “under-development”

label and be a useful and accurate method for estimating hard-to-reach populations. The

models have been used in a large number of real-world studies and have offered promising

results in the field of size estimation. The simplicity of the method is attractive and we

hope this review inspires new and exciting developments in the field.
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Supplementary Material to “Thirty
Years of The Network Scale-up Method”

A Applied Study

In this section, we apply many of the NSUM models listed in Table 1 of the main manuscript

to a standard aggregated relational data (ARD) data set. For this study, we consider

the Curitiba, Brazil dataset, originally studied in Salganik et al. (2011a), which contains

responses from 500 residents of Curitiba about 20 known subpopulations and the one

unknown subpopulation of heavy drug users. The 20 known subpopulations and their

respective known sizes are shown in Table 2.

For readability and conciseness, we apply models from Killworth et al. (1998b) (Kill-

worth MLE), Zheng et al. (2006) (Zheng Overdispersed), Maltiel et al. (2015) (Maltiel

Random Degree and Maltiel Barrier Effects), Habecker et al. (2015) (Habecker MoS), and

Teo et al. (2019) (Teo Basic and Teo Barrier Effects) and report additional estimates and

conclusions from Maltiel et al. (2015) (Maltiel Transmission Error and Maltiel Combined)

and Feehan and Salganik (2016) (Feehan Generalized). The estimates from the Feehan and

Salganik (2016) method are reported in Salganik et al. (2011a) based on an earlier tech-

nical report of their manuscript. We exclude models from before Killworth et al. (1998b)

since Killworth et al. (1998b) is overwhelmingly the most popular method and considerably

improved the earlier estimators. We also exclude McCormick et al. (2010) and McCormick

and Zheng (2012) because the methods require additional data to construct the relative

sizes needed in the modeling. The Curitiba data set does not come from venue sampling, so

Verdery et al. (2019) is not applicable. Finally, we exclude the complete network statistic
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models (McCormick and Zheng, 2015; Breza et al., 2017, 2019) as these methods move

beyond the NSUM method.

We also briefly describe some of the modeling choices for our implementations. For

the Zheng et al. (2006) model, to offer a more equal comparison to the other models and

because there are no subpopulations corresponding to names in the Curitiba data, we let

C = C1 and PG1 be the proportion of people in all known subpopulations (page 414 of

Zheng et al. (2006)). In practice, a different set of reference populations could be used

for scaling, and we’ve found that the choice of reference populations can have a significant

effect on estimates.

For the Habecker et al. (2015) models, we implement only the unweighted mean of sums

(MoS) estimator, since there is no natural choice of weights in the Curitiba data set. Again

to offer a more equal comparison, we do not perform the suggested recursive trimming of

populations.

For the Teo et al. (2019) models, we implement a modified version of their model.

The Curitiba data set does not contain a measure of each respondent’s perception of each

population, which the authors denote xi,l. However, the data set does include demographic

information. Thus, we fit the basic model with no covariates, as well as a barrier effect

model with no transmission error. In our case and adopting the authors notation, the

resulting barrier effect model looks like

NH
i,l ∼ Po((λαi exp{βl} exp{γage,l [zagei − z̄age] + γborn,l

[
zborni − z̄born

]
+ γemployed,l

[
zemployedi − z̄employed

]
+ γgender,l

[
zgenderi − z̄gender

]
SHl })),

where zagei is the age of respondent i, and zborni , zemployedi , and zgenderi are indicator variable

with values 1 if respondent i is born in Curitiba, employed, or male.
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Below, we compare the distribution of the estimated respondent degrees and the esti-

mated size of the unknown subpopulation. Additionally, we briefly discuss the distinguish-

ing features of models, where available. We note that this is not an exhaustive study of the

models nor is it a complete analysis of the Curitiba data set. However, this serves as an

introduction to applying the various models to a canonical ARD data set and a comparison

of how each model relates to one another.

A.1 Degree Estimates

All models we consider estimate the respondent degrees, either as a first step to esti-

mate population sizes or simultaneously alongside other model parameters. Figure (1)

plots smoothed densities of the estimated degrees, upper-truncated at 1000 for visibility.

The degrees corresponding to Bayesian models are calculated using the posterior mean of

the samples. For the most part, the models produce very similar degree estimates (e.g.

Killworth MLE, Maltiel Random Degree, Teo Basic, and Teo Barrier Effects), although

there are some differences between the distributions of estimated degrees. The Zheng

Overdispersed and Maltiel Barrier Effects models both have peaks corresponding to higher

degrees than the other models. The most noticeable difference is the large variability of

the Habecker MoS degree estimates, with one degree estimate even larger than 11000. The

next largest estimate from another model is less than 3500, produced from the Maltiel Bar-

rier Effects model. The variability from the Habecker MoS model is expected, as Killworth

et al. (1998a) advised against the model because the degree estimates have “unacceptably

high variance” due to the influence that small subpopulations have on the estimates. This

finding motivates the use of the recursive trimming, as suggested in Habecker et al. (2015),

which would remove the small subpopulations, leading to more trustworthy results.
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Figure 1: Smoothed density curves of estimated degrees of Curitiba, Brazil ARD respon-

dents. The x-axis was upper-truncated at 1000 for visibility.

A.2 Unknown Population Size Estimates

We also present the heavy drug user prevalence estimates and their corresponding 95%

confidence/credible intervals in Figure 2. Both the point estimate and the uncertainty

intervals vary significantly. Many methods estimate very similar point estimates to the

Killworth MLE model (Zheng Overdispered, Maltiel Random Degree, Teo Basic, and Teo

Barrier Effects). This result is expected, since the overall structure of the models are very

similar (Maltiel Random Degree can be thought of as the Bayesian version of the Killworth

MLE model). The Zheng Overdispersed model simply accounts for extra variability in the
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model through the overdispersion parameter. It is thus surprising that the Maltiel Barrier

Effects model does not also have a similar point estimate, since the model also includes an

extra error term to account for the extra variability. It’s possible that the slight differences

in the assumed distributions of the error terms leads to significantly different results. Lastly,

we note that the Teo Barrier Effects model estimates a slightly larger prevalence than the

Teo Basic model, but produces a similarly sized uncertainty interval. Our analysis here

does not shed light on whether the demographic information offers more reliable estimates

in any aspect, but does show that estimates can be influenced by information about the

respondents.

Because of the inclusion of a transmission error term, the Feehan Generalized, Maltiel

Transmission, and Maltiel Combined estimates are all significantly higher than any of the

models we applied. From the game of contacts, Salganik et al. (2011a) estimated the

transmission rate of heavy drug users is 0.77, i.e. “there is about a 75% chance that an

alter connected to a heavy drug user in Curitiba will be aware that the given ego is heavy

drug user”. Combined with an estimated popularity factor of 0.69, the generalized NSUM

multiplies the Killworth MLE estimate by a factor of 1.88, almost doubling the estimated

prevalence. The transmission error has a similar effect on the Maltiel transmission and

combined models. Note that the Maltiel Transmission and Maltiel Combined point estimate

and uncertainty intervals are approximated from Fig. 5. of Maltiel et al. (2015) and may

differ from the true values by a small amount.

Regarding the uncertainty intervals, it’s clear that models without any overdispersion

estimate (Killworth MLE, Maltiel Random Degree, Teo Basic, and Teo Barrier Effects) have

much smaller uncertainty intervals since these models do not account for any extra vari-

ability. It’s unclear from this study whether the larger uncertainty intervals are desirable,

38



Figure 2: Estimated prevalences of heavy drug users in Curitiba, Brazil from the applied

methods. The black error bars correspond to estimates we generated while the remaining

error bars are reported in their respective manuscripts.

although the inclusion of extra variability makes sense given the biases present in ARD.

It’s also potentially noteworthy that the only model considered which includes respondent

covariate information (Teo Barrier Effects) estimates significantly higher prevalence. As

discussed earlier, the structure of the Habecker MoS estimator produces significantly larger

credible intervals than the Killworth MLE model, although this may be more desirable

with respect to the prevalence estimates than for the degree estimates.
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A.3 Unique Inferences

While all methods considered estimate respondent degrees and unknown subpopulation

sizes, many models also provide insight into unique aspects of the ARD. Zheng et al.

(2006) produces overdispersion estimates for each subpopulation, measuring the variation

in propensities for the respondents to form ties in each subpopulation. In the Curitiba data

set, the subpopulations with the largest variation are heavy drug users and public university

students while the lowest is women recently married. These results are logical since while

most people are roughly equally likely to know a women who was recently married, certain

populations are far more likely to know heavy drug users and public university students

than others. Like our findings for heavy drug users, Zheng et al. (2006) found that other

marginalized populations like including HIV/AIDS patients and homeless persons also have

larger overdispersions.

Similarly, the Teo et al. (2019) models provide unique inference into how respondent

information relates to how many people they report knowing from each subpopulation.

While the Curitiba data set does not contain any information respondent perception of the

subpopulations, the barrier effects model we fit provides information about how respon-

dent age, employment status, gender, and birth location affects the likelihood of knowing

someone from each subpopulation. For example, in our analysis, model estimates suggest

that older respondents report knowing fewer boys and girls under five but more men and

women over seventy. Furthermore, employed respondents are more likely to know bank

tellers than those who are unemployed.
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A.4 Discussion

While this is not meant to be an exhaustive comparison of all existing NSUM models, we

apply a variety of NSUM models to a canonical ARD data set to demonstrate how each

model compares in practice. We have shown that small differences in modeling assumptions

can produce substantial differences with respect to both inference on shared parameters

(degree and unknown subpopulation sizes) as well as to new insights through unique pa-

rameters. While it is difficult to compare the accuracy of estimates, each model can provide

information about important quantities of inference, including overdispersion (Zheng et al.,

2006), transmission effects (Salganik et al., 2011a; Maltiel et al., 2015; Teo et al., 2019), and

respondent demographics (Teo et al., 2019). All R code created for this study along with

a simulated Curitiba data set can be found at github.com/ilaga/Thirty_Years_NSUM.
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Table 2: Curitiba, Brazil subpopulations and sizes

Subpopulation Known Size

New mother under 20 4,088,438

New mother 20 and over 935,153

Man recently married 1,328,606

Woman recently married 3,966,956

Hospitalized for recent traffic accident 899,443

Died 2,993,846

Public middle school student 1,869,098

Private middle school student 258,619

Private high school student 150,989

Public university student 144,130

Taxi driver 104,186

Bus driver 47,587

Bank teller 278,195

Construction worker 222,884

On disability 762,877

City employee 323,863

Girl under five 108,511

Boy under five 178,364

Woman over seventy 472,657

Man over seventy 69,471
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B Table of Network Scale-up Method Studies

Table 3: A survey of NSUM applied studies. Country

and year of study are recorded when provided. When the

year was not provided, the publication year is denoted by

*.

Subpopulation Country, year References

FSW Rwanda, 2011 Rwanda Biomedical Center (2012)

China, 2011 Guo et al. (2013)

China, 2012 Jing et al. (2018)

Iran, 2014* Maghsoudi et al. (2014)

Iran, 2014 Sharifi et al. (2017)

Iran, 2014* JafariKhounigh et al. (2014)

Singapore, 2017 Teo et al. (2019)

Drug Users United States, 1997 Kadushin et al. (2006)

Brazil, 2009 Salganik et al. (2011b)

Brazil, 2009-2010 Salganik et al. (2011a)

Rwanda, 2011 Rwanda Biomedical Center (2012)

China, 2011 Guo et al. (2013)

Iran, 2012* Shokoohi et al. (2012)

Iran, 2014* Maghsoudi et al. (2014)

Iran, 2016 Nasiri et al. (2019)

Iran, 2013 Nikfarjam et al. (2016)

Iran, 2012-2013 Kazemzadeh et al. (2016)
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Table 3: (continued)

Iran, 2016* Sheikhzadeh et al. (2016)

Iran, 2016 Zahedi et al. (2018)

Iran, 2014* JafariKhounigh et al. (2014)

Iran, 2015 Sajjadi et al. (2018)

Iran, 2016-2017 Narouee et al. (2019)

Thailand, 2014 Kanato (2015)

Georgia, 2014 BPU and CIF (2015)

Singapore, 2017 Teo et al. (2019)

MCFSW Rwanda, 2011 Rwanda Biomedical Center (2012)

China, 2011 Guo et al. (2013)

Iran, 2014* JafariKhounigh et al. (2014)

Iran, 2015 Sajjadi et al. (2018)

Singapore, 2017 Teo et al. (2019)

MSM Japan, 2009 Ezoe et al. (2012)

Rwanda, 2011 Rwanda Biomedical Center (2012)

China, 2011 Guo et al. (2013)

China, 2012 Jing et al. (2014)

China, 2012 Wang et al. (2015)

Georgia, 2014 Sulaberidze et al. (2016)

Iran, 2014* JafariKhounigh et al. (2014)

Iran, 2015 Sajjadi et al. (2018)

Singapore, 2017 Teo et al. (2019)
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Table 3: (continued)

Abortion Iran, 2012 Rastegari et al. (2014)

Iran, 2015 Zamanian et al. (2016)

Iran, 2016 Zamanian et al. (2019)

Alcohol Iran, 2012 Nikfarjam et al. (2017)

Iran, 2012-2013 Kazemzadeh et al. (2016)

Iran, 2014* JafariKhounigh et al. (2014)

Iran, 2015 Sajjadi et al. (2018)

Iran, 2016* Sheikhzadeh et al. (2016)

Cancer Iran, 2012-2013 Haghdoost et al. (2015)

Iran, 2014 Vardanjani et al. (2015)

Choking Italy, 2004 Snidero et al. (2007)

Italy, 2004 Snidero et al. (2012)

Social Network Size Iran, 2010* Shokoohi et al. (2010)

Iran, 2012 Shati et al. (2014)

Iran, 2013* Rastegari et al. (2013)

Disabilities Iran, 2012 Mohebbi et al. (2014)

Religious Groups United States, 2016 Yang and Yang (2017)

Seroprevalence United States, 1994 Killworth et al. (1998b)

Rape United States, 1994 Killworth et al. (1998b)

Homelessness United States, 1994 Killworth et al. (1998b)

RWOS Iran, 2012-2013 Kazemzadeh et al. (2016)

EPMS Iran, 2012-2013 Kazemzadeh et al. (2016)
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Table 3: (continued)

Iran, 2014* JafariKhounigh et al. (2014)

Iran, 2015 Sajjadi et al. (2018)

Iran, 2016* Sheikhzadeh et al. (2016)

PED UK and Southern Ireland, 2013* James et al. (2013)

Sex Trafficked United States Shelton (2015)

Suicide Iran, 2014 Daneshi et al. (2014)
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