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Abstract

Certain subpopulations like female sex workers (FSW), men who have sex with
men (MSM), and people who inject drugs (PWID) often have higher prevalence of
HIV/AIDS and are difficult to map directly due to stigma, discrimination, and crim-
inalization. Fine-scale mapping of those populations contributes to the progress to-
wards reducing the inequalities and ending the AIDS epidemic. In 2016 and 2017, the
PLACE surveys were conducted at 3,290 venues in 20 out of the total 28 districts in
Malawi to estimate the FSW sizes. These venues represent a presence-only data set
where, instead of knowing both where people live and do not live (presence-absence
data), only information about visited locations is available. In this study, we develop
a Bayesian model for presence-only data and utilize the PLACE data to estimate
the FSW size and uncertainty interval at a 1.5× 1.5-km resolution for all of Malawi.
The estimates can also be aggregated to any desirable level (city/district/region) for
implementing targeted HIV prevention and treatment programs in FSW communi-
ties, which have been successful in lowering the incidence of HIV and other sexually
transmitted infections.
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1 Introduction

The work in this paper is motivated by the study of the HIV/AIDS epidemic, which is

especially a public health threat in sub-Saharan African countries. Eastern and Southern

Africa account for 45% of HIV infections and 53% of individuals living with HIV globally.

The 90-90-90 treatment target set by UNAIDS aims to achieve three goals by the end

of 2020: 90% of all people living with HIV know their HIV status, 90% of all people

with diagnosed HIV infection will receive sustained antiretroviral therapy, and 90% of all

people receiving antiretroviral therapy will have viral suppression (Joint United Nations

Programme on HIV/AIDS, 2014a). While saving lives has been very successful, the number

of new HIV infections was not falling fast enough to meet the 2020 goal (Joint United

Nations Programme on HIV/AIDS, 2018). New HIV infections were reduced by only 18%

from 2010 to 2017, much lower than the 2020 target of 75%. In order to decrease new HIV

infections, it is first necessary to understand where those with AIDS live. A very large

portion of new HIV infections occur in key populations like sex workers, men who have sex

with men, and intravenous drug users. Female sex workers (FSW) are one of the largest

groups and are 12 times more likely to have HIV than the general population (Joint United

Nations Programme on HIV/AIDS, 2014b). One study of 16 sub-Saharan African countries

found the HIV prevalence for FSW to be above 37% (Joint United Nations Programme

on HIV/AIDS, 2014b). It is clear that treating HIV positive individuals is not enough to

meet the 90-90-90 goal, and success depends on reducing the spread of HIV in these key

populations.

FSW populations are difficult to map directly because they represent a relatively small

part of the population and have an incentive to hide their status. Small area estimates often

suffer from large uncertainty due to small sample sizes. The University of North Carolina
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performed on-site surveying of venues believed to house FSW to estimate district-level

FSW size in Malawi, which is by far the most detailed venue level data (UNC et al., 2018).

The venue is the unit of observation in the study. Their team published the Priorities for

Local AIDS Control Efforts (PLACE) report, which documents how venues were discovered

and visited and how FSW size estimates were calculated using probability weights. Only

a subset of the reported venues were visited. Prior to surveying venues, the PLACE team

obtained accurate counts of the total number of venues in each district. By mapping venues

instead of FSW directly, the PLACE team can reach a much larger portion of the FSW

population.

In an ideal case, regression models to map population sizes are built on records of

both where people live and where no people live. Records that include both pieces of

information are known as “presence-absence” or “used-unused” data (Pearce and Boyce,

2006). Regression methods can typically be applied directly to presence-absence data

without much trouble. However, recording absences can be difficult, leading to presence-

only data, which is data where only coordinates of observed sites are recorded, offering no

information of presence for other locations. Most of the original presence-only literature

used a “pseudo-sampling” approach, which samples background observations and assumes

they are absences. Combining the pseudo-absences with the observed presences created a

pseudo-presence-absence data set that could be modeled with more traditional techniques.

We recommend Pearce and Boyce (2006) for a nice introduction. Maxent also emerged as

a popular choice for modeling presence-only data (Phillips et al., 2004, 2006).

Given the lack of information about absences, modeling abundance given presence-

only data is challenging, so traditional models limit inference to binary presence-absence

estimates, rather than any measure of cell-level abundance. To the best of their knowledge,
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Pearce and Boyce (2006) knew of no application modeling abundance given presence only.

Ward et al. (2009) later developed an EM approach which can estimate abundance given

presence only when an estimate of population prevalence is available, but it can only handle

binary presence-absence observations. Later researchers developed point process models for

the data which overcame many of the existing problems. See Banerjee et al. (2014) and

Renner et al. (2015) for some examples.

Additionally, the observations may be marked points. For marked point processes,

the observations contain additional information about the observation. For example, the

locations of trees constitute a point process, and the height or width of the trees are

“marks.” Banerjee et al. (2014) offers a nice chapter on marked point processes.

The PLACE data are an example of the marked presence-only data, where locations

of visited venues constitute the point process, the visited venue sizes represent the marks,

and the locations of unvisited venues are unknown. The PLACE report also provides the

total number of venues in each district. In this article, we propose a Bayesian model-based

approach that can map abundance given both presence-only data and the total number

of observations. We utilize the PLACE data to estimate Malawi FSW sizes at fine-scale

cells. Our proposed model is flexible and can account a wide range of data properties.

Our model can handle cells with more than one observation, estimate abundance given the

total number of observations, include random effects to reduce heterogeneity and account

for systematic differences between areas, handle marked observations, incorporate uneven

sampling efforts, and calculate credible intervals for domains that include multiple cells.

The paper is organized as follows. Section 2 introduces the data and their special

features and how to handle the spatial misalignment issue. In Section 3, we introduce

our choices of distributions and a calibrated Bayesian presence-only approach for modeling
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the FSW size at the cell-level. We validate our approach on a complete presence-absence

subset of the PLACE data and via simulations in Section 4. We apply the method on the

entire PLACE data in Section 5, providing cell-level and district level estimates of FSW

size, including credible intervals. Finally, Section 6 covers concluding remarks and future

work.

2 Data and Special Features

We combine multiple data sources in order to estimate the FSW size at a fine-scale grid.

Our responses (FSW size at visited venues and the venue locations) come from PLACE,

while the predictors come from a combination of environmental, demographic, and health

data. Subsection 2.1 further introduces the PLACE data. In subsection 2.2, we explore

the auxiliary variables we use as predictors of FSW size. Data pre-processing and spatial

alignment is handled in subsection 2.3.

2.1 PLACE Data

The Priorities for Local AIDS Control Efforts (PLACE) is funded by the United States

Agency for International Development (USAID) and the United States President’s Emer-

gency Plan for AIDS Relief (PEPFAR) to understand the HIV epidemic and help reach the

90-90-90 target (Measure Evaluation, 2018). PLACE was developed to address the local

behavior of HIV transmission. In 2016, The University of North Carolina implemented

the PLACE I study in Malawi, surveying five districts (Lilongwe, Blantyre, Mangochi,

Machinga, and Zomba) and one city (Mzuzu). Through additional funding, the PLACE II

study was implemented in 15 additional districts, including the rest of Mzimba, the district
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for Mzuzu. The four main objectives enumerated in the PLACE report (2018) are: (1) to

conduct programmatic mapping in selected district to identify venues where key popula-

tions can be reached, (2) to estimate the size of key population in each district who can be

reached at venues, (3) to characterize HIV service coverage indicators for HIV programs

reaching key populations, (4) in a subset of districts, to survey and test members of key

population groups. Figure 1 includes a map of the visited venues in the Lilongwe district

(UNC et al., 2018). We can see that venues are highly clustered and typically lie along

major roads or near the city center.

In order to achieve the first goal of PLACE, the team interviewed community informants

to form a list of venues which were believed to host FSW, cleaned the list, and verified that

the list was complete. The district-level venue counts were obtained for the 20 districts in

PLACE I and II. The PLACE team visited a subset of venues. GPS locations were only

recorded for these visited venues and thus formed the presence-only data. Interviews with

knowledgeable personnel at each venue provided estimates of the number of FSW present

at each venue. In PLACE I, the original plan was to visit all identified venues. However,

due to time constraints, a convenience sample of venues was visited. In PLACE II, venues

were divided into groups based on priority, and venues were sampled from the high priority

groups via a predetermined structure. In the PLACE Report, FSW estimates for district

where no data was collected were obtained by combining expert knowledge with prevalence

estimates from other districts. For example, the FSW prevalence in Thyolo was assumed

to be equal to the average prevalence of all district in the Southern Region. The complete

methodology for both PLACE reports is recorded in the PLACE Report Malawi (UNC

et al., 2018).
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Figure 1: An example of visited sites in Lilongwe, reprinted with permission from the
PLACE report. Colors indicate whether any HIV prevention was available at the site in
the last 6 months. HIV prevention activities include condom availability, HIV testing, and
similar activities.

2.2 Auxiliary Variables

Using the auxiliary variables enables us to map a more complete picture of Malawi key

populations. In the PLACE report, venue weights were used to extrapolate the FSW size

to the district level (UNC et al., 2018). The proportion of venues visited and operational

were used to calculate the venue weights. This venue weighting assumes that unvisited

venues behave similarly to visited venues, ignoring the location and local characteristics

of unvisited venues. We can improve FSW size estimates by employing a regression-based

approach with auxiliary data from multiple sources which accounts for the local character-

istics of all venues. The auxiliary variables that we use are the demographic and health

survey (DHS) data, night-time lights (nightlight), and WorldPop.

2.2.1 DHS Data

The DHS data are the results of a survey of 26,361 household in Malawi where respondents

were asked questions like annual income, age at first sex, and number of sexual partners.
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(a) (b) (c) (d)

Figure 2: Illustrative maps of the auxiliary covariates. (a) shows which clusters are urban
and rural. (b) shows the distribution of the mv191 (combined wealth index factor score).
(c) and (d) show the scaled WorldPop and nightlight cell estimates, respectively.

Respondents were surveyed between October 2015 and February 2016. DHS divided house-

holds into 850 “clusters,” which represent groups of household that are close in proximity.

DHS perturbed the cluster locations to ensure the privacy of respondents. We treat the

recorded cluster locations as the truth since the effect of the perturbations will have a much

smaller effect on the estimates than the variability of the venue counts and the FSW sizes.

As the data contains thousands of questions, after consulting with relevant experts, we

created an initial list of covariates that we believed would be useful in modeling either the

venue count or venue size. DHS clusters (as well as WorldPop and nightlight data discussed

later) are shown in Figure 2.
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2.2.2 Nightlight

The most popular FSW venues likely produce light during the night, so a measure of

nightlight intensity should be an important predictor of both venue count and FSW size.

We use nightlight data recorded by the Earth Observations Group at the National Oceanic

and Atmospheric Administration and the National Centers for Environmental Information

(NOAA/NCEI) (NOAA, 2016). The nightlight data measures the low levels of visible-near

infrared radiance via satellites. The data was recorded at a roughly 450 meter resolution,

resulting in 567, 284 locations of recordings from polar orbiting satellites twice a day. We

use 2016 data, aggregated by month. Month averages are then averaged, yielding annual

average nighttime values across Malawi. The cell-level nightlight values are extremely right-

skewed, so the values were taken on the log-scale after alignment. The cell-level estimates

after centering and scaling are shown in Figure 2.

2.2.3 WorldPop

Areas with higher populations should intuitively have more venues, and potentially more

FSW per venue. In order to capture this relationship, we use the 2015 adjusted WorldPop

data set, which adjusts the population estimates to match UN national estimates (World-

Pop, 2015). WorldPop estimates the number of persons per grid square at approximately

100 by 100 meter cells. Cells with zero WorldPop values were removed and the remaining

values were taken on the log-scale. These cells typically represent inhabitable zones like

forests and lakes, so we limit inference to cells that are habitable. The cell-level estimates

after centering and scaling are also shown in Figure 2.
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2.3 Combining the Data

The venues in Malawi represent a presence-only marked point process since the observations

contain only the longitude, latitude, and venue size estimate of visited venues in Malawi.

However, the responses and predictors exist on different spatial levels. This issue is known

as spatial misalignment, and has been discussed in detail (see Mugglin et al. (2000), Gelfand

et al. (2001), Young et al. (2009), Carlin et al. (1999), Banerjee et al. (2014).) Since we

have a two-part model, we also have two spatial resolutions: cell-level data for the venue

count model and venue-level data for the venue size model.

For the venue count model, we first divide Malawi into cells of approximately 1.5x1.5-

km. We discuss the choice of cell size in Section 4. The areas of the cells vary between 2.318

km2 and 2.392 km2, which has a negligible effect on the estimates. The small differences

in area arise because the distance between each degree of latitude depends on the distance

to the equator. For the venue count response, we count the number of observed venues

in each cell. For the DHS predictors, we perform universal kriging to estimate the value

in each cell. We impose a Matérn covariance function on the Gaussian Process in the

kriging model, and parameters are estimated using restricted maximum likelihood via the

fields package (Nychka et al., 2017). The WorldPop and nightlight data are recorded at

a much finer scale than our Malawi cells, so cell-level values are calculated by averaging

the WorldPop and nightlight points which lie inside the cell. After removing the cells with

WorldPop equal to zero, there are 39,312 cells for all of Malawi and 20,751 cells in PLACE

II districts, of which 385 contained observed PLACE II venues.

For the venue size model, our spatial resolution is the observed venue locations. Thus,

only the predictors need to be aligned since the venue size response is already known

at observed venues. The procedure for the DHS predictors is the same as for the cell-
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level, where estimates are now obtained at venue locations via kriging. The WorldPop and

nightlight values at each venue are obtained by finding the closest WorldPop and nightlight

recording.

3 Methodology

In this section, we introduce the approach for modeling the venue size (number of FSW at

the venue-level) and venue count (number of venue at the cell-level). The venue locations

comprise a presence-only data set. Our model assumes that the true cell-level venue counts

follow a zero-inflated negative binomial (ZINB) distribution, and we observe a thinned

version of these counts. The details of the thinning are discussed in Section 3.3. While

analyzing spatial point patterns by dividing the domain into cells and modeling the number

of occurrences in the cells is not new, we are unaware of its application to presence-only

data. In this section, we first introduce the venue size and venue count models. Following

the modelling choices, we discuss how the models are used to predict the number of FSW

in each cell which includes a calibration step.

3.1 Models

Here we summarize the modeling choices and further specify our choices of priors in the

Bayesian framework. Both the venue counts and the venue sizes seem to follow zero-

inflated distributions. We assume that given the covariates for a cell, the venue count and

the venue size are conditionally independent and we assess whether or not this assumption

is reasonable in subsection 4. We use the zero-inflated model described in Lambert (1992)

to model both the venue counts and the FSW size. In this formulation, zeros can come from
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either excess zeros or from the conditional distribution, fc(y). The zero-inflated distribution

is given by

P (Y = 0) = p+ (1− p)fc(0)

P (Y = y) = (1− p)fc(y)

for y = 0

for y > 0,
(1)

where p is the probability of excess zeros and the choices of fc(y) are motivated by predictive

performance and are specified in Sections 3.2 and 3.3.

3.2 Venue Size

We can directly model the average number of FSW at the venue-level (venue size) using

both PLACE I and PLACE II data. We choose a hurdle log-normal model for the venue size

model, i.e. fc(y) in Equation (1) is given by log(Ysize) ∼ N(µ, σ2
size), where Ysize represents

the observed venue sizes with corresponding covariate matrix Xsize. We use a logit link for

p. Given the covariates, we assume the linear regression models:

logit(pi,size) = α0,size + Xi,size,pα1,size + γd[i],size,p (2)

log(µi,size) = β0,size + Xi,size,µβ1,size + γd[i],size,µ (3)

where i denotes the cell number, d[i] denotes the district for cell i, Xi,size,p and Xi,size,µ

are subsets of Xsize, and γ are the random district effects. We impose weak priors on

the regression coefficients, where α0 ∝ logistic(0, 1), α1 ∝ 1, β0 ∝ t3(−2, 10), β1 ∝ 1,

σ2
size ∝ t3(0, 10). For the district random effects, we impose normal priors, i.e. γd[i],size,· ∼

N(0, σ2
district,size,·), where the · argument is either for p or µ. Additionally, σ2

district,size,· ∝ 1.

We choose to model venue size via a hurdle log-normal distribution based on both

visual diagnostics, posterior predictive p-values, and leave-one-out (loo) cross-validation.
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The hurdle log-normal distribution offers much better results for these metrics than a ZINB

distribution, despite the venue sizes being counts. Because of the large number of zeros,

non-zero-inflated models do not perform well.

3.3 Venue Count

We first assume that the true cell-level venue counts, Ỹ , follow a ZINB distribution and

the observed venues Y follow a π-thinning of Ỹ , i.e.

Yi =

Ỹi∑
k=1

Ii,k,

Ỹi ∼ ZINB(pi, µi, φ)

Ii,k ∼ Bern(πd[i])

(4)

where Ii,k indicates whether venue k in cell i was sampled and πd[i] is the sampling prob-

ability for the district for cell i. Here, we use ZINB(pi, µi, φ) to denote the zero-inflated

negative binomial distribution with probability of excess zero pi, conditional mean µi, and

conditional over-dispersion φ, where the negative binomial parameterization we consider is

fc(ỹi) =

(
ỹi + φ− 1

ỹi

)(
µi

µi + φ

)ỹi ( φ

µi + φ

)φ
. (5)

This π-thinning, also known as binomial subsampling, assumes that each venue is sampled

independently according to the sampling effort in each district (Puig and Valero, 2007).

In order to show that the distribution of Y also follows a ZINB distribution where only

the mean of the negative binomial component is multiplied by πd[i], we present the following

two propositions.
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Proposition 1. Let a random variable X ∼ NegBin(mean = µ, dispersion = φ), as

defined in (4). Let Y =
∑X

k=1 Ik, where Ik ∼ Bern(π), the π-thinning of X. Then,

Y ∼ NegBin(mean = πµ, dispersion = φ).

Proposition 2. Let a random variable Ỹ = (1−Z)X be any zero-inflated discrete random

variable, where Z ∼ Bern(p) and fc(x) represents the p.m.f. of X. Let X∗ =
∑X

i=1 Ix,i

denote the π-thinning of the count distribution, where Ix,i ∼ Bern(π). If Y =
∑Ỹ

i=1 Iy,i,

where Iy,i ∼ Bern(π), then Y
D
= (1− Z)X∗.

Another way of stating Proposition 2 is that the thinning operator ignores the zero-

inflated component. With these two propositions, we arrive at the main proposition for

our model.

Proposition 3. Let Ỹ be a zero-inflated negative binomial random variable, with negative

binomial mean µ and dispersion φ, i.e. Ỹ ∼ ZINB(p, µ, φ). If Y =
∑Ỹ

k=1 Ik, where

Ik ∼ Bern(π), then Y ∼ ZINB(p, πµ, φ).

All proofs are shown in the Appendix. Using Proposition 3, Yi ∼ ZINB(pi, πd[i]µi,count, φ),

where Yi is our observed venue count for cell i. In standard generalized linear model terms,

this is equivalent to adding an offset of log(πd[i]) to the linear predictor, providing an easy

way to fit the model using common statistical software. Because the sampling probability in

each district, πd[i], are known, we can estimate all parameters in the original model directly

by fitting an offset model. Thus, our model for the observed venue counts, probability of
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excess zeros pcount, and mean of the conditional distribution µcount are given by

Yi ∼ ZINB(pi,count, µi,count, φ)

logit(pi,count) = α0,count + Xi,count,pα1,count + γd[i],count,p + ηi,count,p

log(µi,count) = β0,count + Xi,count,µβ1,count + γd[i],count,µ + log(πd[i]),

(6)

where η ∼ MVN(0, kp(x)). Based on the data and loo cross-validation, a spatial er-

ror term η is placed on the Bernoulli model but not on the negative binomial model.

We impose the same priors on the regression parameters and the random effects. For

the shape of the negative binomial distribution, we impose a gamma prior, i.e. φ ∼

gamma(0.01, 0.01). For the spatial term η, we choose the exponentiated-quadratic kernel

k(xi, xj) = σ2
gp exp(−||xi − xj||2/(2l2scale)) and impose a flat prior on σ2

gp and an informa-

tive inverse-gamma prior on lscale as lscale ∝ inv − gamma(0.976289, 0.008892), where the

hyperparameters were estimated from the data.

One key advantage of our model is that traditional GLM regression diagnostics can

be used, a significant limitation of other presence-only models. Furthermore, our cell-

level approach can be extended to other distributions, like the zero-inflated Poisson, or

non-zero inflated Poisson and negative binomial distributions, for example. The method

requires only knowing the distribution of the thinned process and being able to estimate

the parameters of the original process using only the thinned process.

3.4 Prediction and Calibration

To predict the number of FSW in each cell, we fit a venue size model and a venue count

model independently. The venue size model estimates the number of FSW at a venue via
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a hurdle log-normal distribution. This model is fit using the observed venue sizes. Using

cell-level covariates, we predict the venue size for venues in all cells. The calibrated venue

count model estimates the number of venues in a cell in three steps: (1) fit a ZINB model

using observed venue counts, accounting for the thinning process in each district via an

offset, (2) predict the venue count for all cells using the fitted model, and (3) calibrate

the predicted venue counts in each district to match the known district-level venue counts.

After modeling venue size and count, we predict the cell-level FSW sizes by multiplying

the calibrated venue counts by the predicted venue sizes.

Predictions of the true venue counts can be made by setting πd[i] = 1 for all cells. For

districts where district-level venue counts are known, we calibrate the predictions from

each posterior sample of the venue count model so that the predicted venue count equals

the known venue count at the district-level. For each district, this is done in two steps for

each set of posterior samples: (1) obtain district-level venue estimates for each posterior

sample by summing the predicted values for each cell with πd[i] = 1, and (2) multiply each

predicted value for the posterior sample by the calculated scaling factor λ, so that the sum

of predicted values equals the known count. However, we perform no calibration for the

remaining districts, as no information is available. Note that we simulate district random

effects when they were not estimated from the model. These random effects are the PLACE

I districts and remaining unvisited districts in the venue count model and the unvisited

districts in the venue count and venue size models.

Note that step (1) already assumes the expected number of venues in each district is

equal to the district-level venue counts provided by the PLACE report for districts included

in the venue count model (only PLACE II districts). Step (3) then calibrates the venue

counts for the remaining districts where district-level venue counts are known. To remain
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consistent across districts, we calibrate the venue counts for all districts where the counts

are known. If the district level venue counts are believed to have measurement errors,

then the exact matching is not needed and step (3) could be omitted entirely or relaxed.

For Malawi, the PLACE team interviewed thousands of community informants to find all

possible venues, so we believe the district-level venue counts very accurate, and thus adopt

the exact matching approach.

4 Model Validation

In this section, we check our model assumptions for the PLACE data, and where that is

impossible, we use a simulation study to explore the behavior of the models when those

assumptions are violated. We have four main assumptions which we check in the following

order: (1) the true venue counts follow a zero-inflated negative binomial distribution, (2)

venue size and venue count are conditionally independent, (3) the cell resolution provides

accurate results, and (4) venues were sampled uniformly within each district. We can check

the first two assumptions directly for our PLACE data, but we rely on a simulation study

to evaluate the effect of cell-resolution and non-uniform sampling.

4.1 Real Data Validation

Checking the performance of presence-only models using real data is difficult because the

truth is typically unknown. However, the PLACE team visited almost every venue in

three districts, Mchinji, Mwanza, and Neno, which provides us with a validation data set

where almost all true venue counts are observed. The number of observed venues against

the number of operational venues for the complete districts are 98/102, 75/78, and 64/65,
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respectively. We refer to these three districts as the complete districts, even though a

few venues were not visited. Note that even though almost all venues were visited, the

venue sizes are not available at all venues, so the district-level FSW sizes are still unknown.

We use these complete districts to first show the appropriateness of our assumed ZINB

distribution for the venue counts, and then to show the conditional independence between

the venue counts and the venue sizes.

4.1.1 Distribution of True Venue Counts

We first check that the true venue counts follow a ZINB distribution by fitting a non-

thinned ZINB model with the venue counts from the complete district. We rely on posterior

predictive p-values to verify the goodness of fit, and these results can be found in Table 3

in the Appendix. More details about posterior predictive p-values and test statistics can

be find in Section 5 where we introduce the p-values for all of Malawi. Based on these

values, we find the ZINB distribution provides a very reasonable goodness of fit for the

complete districts. Visual diagnostics similar to those in Figure 8 were also considered

for the complete districts, but are not included here as there is no clear evidence that the

models do not adequately fit the data.

4.1.2 Model Independence

Next, we provide evidence for the independence between the venue counts and venue sizes

by examining the cell-level residuals. For the venue count model, the residuals are defined

as the observed number of venues in cell i minus the predicted number of venues. For

the venue size, the residuals are the average venue size in cell i minus the predicted venue

size. However, since true-data is generally unknown, we limit our analysis to only the
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Figure 3: A scatter plot of venue size residuals and venue count residuals.

three complete districts and only the cells with at least one venue. Cells with zero venues

are excluded because there is no average venue size. The scatter plot of the venue size

residuals and venue count residuals is shown in Figure 3. The residuals do not appear to

have any strong correlation structure, suggesting the conditional independence assumption

is reasonable.

4.2 Simulation Study

To address the final two assumptions, we rely on a simulation study. We first show that

cell resolution does affect total FSW size estimates, but it is difficult to determine the

optimal cell resolution using residual diagnostics. We then show that if venues are sampled

proportionally to a covariate, total FSW size is again biased, but including the relevant

covariate helps mitigate most of the bias. We now introduce our simulation design. For
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our simulation study, we control three factors: cell resolution, (non)uniform sampling, and

whether all covariates related to nonuniform sampling are included in the regression model.

Design of cell resolutions: Our spatial domain for the simulations is the unit square.

Specifically, we first simulate a spatial grid of covariates, divide the domain into a grid of 45

by 45 equal sized cells, yielding 2025 cells. In each cell, we simulate the counts, locations,

and sizes of venues according to a ZINB distribution for the counts and a hurdle log-normal

distribution for the sizes. Simulation parameters are chosen to resemble the PLACE data.

These 2025 cells represent the “true resolution” since the venue counts at this resolution

are simulated from a ZINB distribution. We then divide the domain into either 484 (large)

cells, 5041 (small) cells, or use the true cells, and find the covariates in each cell. The large

cells correspond to a grid of 22 by 22 equal sized cells and the small cells to 71 by 71 equal

sized cells (relating these cell sizes back to the Malawi study, these are roughly equivalent

to considering 3× 3-km or 1× 1-km cells instead of our 1.5× 1.5-km cells).

Design of (non)uniform sampling: We thin the venues either uniformly (half of all

venues are sampled with equal probability) or nonuniformly (half of all venues are sampled

where the probability of sampling a venue is strongly correlated with one of the covariates).

The observed venue counts are found for each cell resolution, our thinned ZINB model is

fit to the counts and calibrated, and a hurdle log-normal model is fit to the sizes. For the

fitting, we either fit the model with all covariates (all covariates) or exclude the covariate

correlated to the sampling probabilities (missing covariate).

Total FSW size is found by predicting the count and size to each cell for each posterior

sample, calibrating the counts, summing the cell-level FSW estimates across all cells, and

finding the mean of each predicted total FSW size. This process is repeated 1000 times.

The results for the simulations are shown in Figure 4, where the different cell sizes are
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(a) (b) (c) (d)

Figure 4: Distribution of total FSW estimates under different model assumptions and cell
resolutions. We consider uniform sampling of venues with all covariates in the regression
model (a), uniform sampling with a missing covariate (b), nonuniform sampling with all
covariates (c), and nonuniform sampling with a missing covariate (d). The solid line cor-
responds to the true cell resolution, the dotted line to small cells, and the dot-dash line to
large cells. Percent error is defined as (Y − Ŷ )/Y , where Y is the true total FSW size.

shown as different line types, the different model assumptions are provided in the titles,

and the percent error is defined as (Y − Ŷ )/Y , where Y is the true total FSW size

4.2.1 Cell Resolution

We first show that cell resolution affects total FSW size estimates. We can see in subplot

(a) that under the ideal scenario when sampling is uniform and all covariates are included

in the regression model, the percent error is centered around zero. Under all scenarios, the

cell resolution does influence the results, but the distribution of posterior-means are mostly

overlapping. Based on these simulations, there also does not appear to be any systematic

bias based on cell-size. For scenario (a), the average percent errors for the same, small, and

large cell resolutions are 1.39%, 3.19%, and 4.91%, respectively. The difference between the

average percent errors is similar for the other scenarios. In all cases, the residual diagnostics

of all cell resolutions appear to provide good fit, with no model obviously performing better

21



than another, suggesting that it is very difficult to choose the best cell resolution based

only on the data.

4.2.2 Uniform Sampling

Finally, we conclude from Figure 4 that while nonuniform venue sampling biases total FSW

estimates, including the covariate related to sampling helps mitigate this bias. Comparing

subplots (a) and (c), we can see that nonuniform sampling does introduce slight bias. For

subplot (d), excluding the covariate related to sampling further biases the results. While

results are best when sampling is uniform and all covariates are included in the model,

the errors introduced by violations of these assumptions are still relatively small. For

the “same” cell resolution, the average percent errors for each assumption scenario are

1.39% (a), 1.89% (b), -0.45% (c), and 4.56% (d), clearly showing the larger bias introduced

by excluding the sampling covariate, but the differences between the average errors are

relatively small compared to the variation introduced by observing only half of the venues.

5 Estimation of FSW in Malawi

Here we apply our model to the PLACE data and map the distribution of FSW in Malawi.

We first divided Malawi into cells. The cell size should be small enough such that the

behavior inside the cells are homogeneous while large enough that computation is feasible.

To balance these two factors, we divided Malawi into cells of approximately 1.5x1.5-km. For

the venue size model, we used all visited venues from both PLACE I and II studies. Due to

the convenience sampling for venue locations in PLACE I, only PLACE II venues are used

to model venue count, excluding Mzimba. Mzimba was removed because the largest city of
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Table 1: Posterior predictive p-values for Malawi.

Test Statistics Venue Count Venue Size
Positive Mean 0.487 0.482
Positive Standard Deviation 0.680 0.523
Over-dispersion index 0.725 0.548
Maximum 0.855 0.777
Proportion of Zeros 0.521 0.507

Mzimba was visited in PLACE I, while only the rest of Mzimba was visited in PLACE II.

Additionally, 15 venues with more than 100 recorded FSW were excluded from the venue

size model because in all cases, the recorded number of women present at a busy-time was

less than 100, clearly showing the very large counts are unreliable. This process leaves us

with 20,751 cells for the venue count model and 2,541 venues for the venue size model.

All analysis was done using R (R Core Team, 2019). Covariates were standardized

prior to fitting. Spatial kriging was done via the fields package (Nychka et al., 2017).

Bayesian modeling was implemented using the Stan probabilistic programming language

(Stan Development Team, 2019) and the brms package (Bürkner, 2017). Since the number

of samples was fairly large, we fit an approximate Gaussian Process with 5 basis functions

and a multiplicative constant of 5/4 for ηi,count,p, as suggested in the brms package. The

multiplicative constant defines the range over which predictions from the Gaussian Process

should be computed, and complete details of the approximate Gaussian Process used are

found in Riutort-Mayol et al. (2020).

We again investigate model fit via posterior predictive p-values and visual diagnostics.

These p-values are shown in Table 1 for both the venue count and venue size model and

visual posterior checks are shown in Figure 8 in the Appendix. For a given test statistic

T (y) for data y, the posterior predictive p-value is defined as P (T (yrep) > T (y)|y), where
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Table 2: Table of predictors in the final models. Districts are included as random effects
in all models. The − and + indicate the direction of significant coefficients for each model
at the significance level 0.05, • indicates the predictor was included for predictions but its
coefficient was not significant, and a blank space indicates the predictor was not included
in the model.

Predictor
Label

Meaning µsize psize µcount pcount

v155 Literacy • •
mv201 Total children ever born -

mv167
Times away from home in
last 12 months

• •

Built
Built-up index. Higher val-
ues roughly correspond to
more buildings

+ • +

hivpos Percent HIV positive •
WorldPop 2015 population estimate • - + -
nightlight Night-time light activity + - -

yrep represents the potential replication of the data (Meng et al., 1994; Gelman et al., 2013).

Extremely large or small posterior predictive p-values might indicate violations of model

assumptions. The test statistics we consider are the positive mean (T (y) = E(y|y > 0)),

positive standard deviation (T (y) = SD(y|y > 0)), the over-dispersion index (T (y) =

V ar(y)/E(y)), the maximum (T (y) = max(y)), and the proportion of zeros (T (y) = P (y =

0)). These test statistics were chosen because they check the main aspects of our zero-

inflated distributions. Based on these metrics, the observed venue counts closely followed

a ZINB distribution. Similarly, the hurdle log-normal distribution outperformed other

standard models we considered like the ZINB and the values indicate no clear lack of fit.

Table 2 summarizes the variables selected in each model, where µsize represents the

mean of the log-normal distribution on the log scale for the venue size, µcount the mean
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of the negative binomial distribution for the venue count, and psize and pcount for mean

of the Bernoulli distribution for the venue size and count models, respectively. To avoid

overfitting, variables were selected by removing the least significant variable sequentially

from saturated occurrence and abundance models. The collection of nested models were

compared using posterior predictive p-values, leave-one-out predictive error, and visual

diagnostics. The selected model performed the best with respect to leave-one-out predictive

error and the visual diagnostics and posterior predictive p-values did not indicate any poor

model fit. Note that our goal is not testing the significance of associations but providing

the spatial distribution of the venues and FSWs. The coefficients represent the conditional

relationship given other covariates instead of the marginal relationship.

The district-level FSW size estimates are shown in Figure 5 as posterior densities.

Stars, triangles, and circles indicate the PLACE Report estimates for PLACE I districts,

PLACE II districts, and districts in neither PLACE study, respectively. There is no FSW

estimate from the PLACE Report for Likoma. The population of Likoma is extremely

small compared to the other districts, so we do not include credible intervals for Likoma

in Figure 5. Not all 95% credible intervals cover the PLACE report district estimates,

although most estimates are very close. Note, however, that the PLACE estimates are

not gold standards for the district-level FSW estimates. We expect the PLACE district

estimates to be larger than our estimates because the PLACE method likely oversamples

from large venues in populated areas. We find this to be the case for many, but not all

districts. The random effects were not estimated for PLACE I districts in the venue count

model or for districts in neither PLACE study in the venue size and count models, so these

districts have larger credible intervals due to simulating the random effects.

We also present the estimated scaling factors λ for each district in Figure 6. The λ
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Figure 5: District-level FSW size 95% credible intervals for all districts in Malawi. The light
gray area indicates the 50% credible interval and the dark gray lines indicate the posterior
mean. Stars, triangles, and circles indicate the PLACE Report estimates for PLACE I
districts, PLACE II districts, and districts in neither PLACE study, respectively.

represents the discrepancy between the known total number of venues and the estimated

total number of venues in each district, where λ = 1 corresponds to perfectly estimated

venue counts and λ > 1 corresponds to underestimated venue counts. For districts where

venue count data was included in the model (PLACE II) and the data informs the district

random effects, the scaling factors are all very close to λ = 1. For PLACE I districts,

district-level venue counts are still reasonably close to the truth, although the total number

of venues is consistently overestimated in Mangochi and slightly underestimated in Blantyre

and Lilongwe. One possible explanation is that there are large district random effects

that are not explained by the covariates. The random effect could be related to social,
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Figure 6: Scaling factors λ for each districts. Stars, and triangles indicate the mean λ
for PLACE I and PLACE II districts, respectively (no scaling factors can be estimated for
other districts). The error bars indicate the lower and upper 95% quantiles of the estimated
λ. A flat line at λ = 1 is shown for reference.

environmental, or political factors that the covariates cannot capture. The difference could

also be a result of different efforts in identifying venues in the data collection stage. In

particular, Mangochi is the only district where the target number of community informants

was not met, potentially leading to an underestimation of the number of venues in the

PLACE report. Overall, the model reasonably estimates the total number of venues in

each district, even when venue count data is not used, as is the case for PLACE I districts.

For privacy reasons, we omit a cell-level mapping of the FSW in Malawi at the resolution

used in the model fitting. Instead, we aggregate to much larger cells, approximately 4.8×

4.8-km. Maps of predicted FSW size, FSW size on the log-scale, and the log of the variance
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(a) (b) (c)

Figure 7: Maps of FSW counts in each cell in Malawi (a) and on the log-scale (b). The
log of the variance estimates for FSW counts are shown in (c). Cells with estimated zero
FSW are shown as gray.

estimates of FSW size are shown in Figure 7.

6 Conclusion

In this paper, we have introduced a fully model-based approach for modeling marked

presence-only data. The Bayesian implementation allows us to easily incorporate other

data-related issues aside from presence-only, like spatial dependency, while also seamlessly

producing credible intervals. The zero-inflated model can, however, be fit using frequentist

methods, although confidence intervals and other considerations may be more difficult to

calculate.

The results in this paper are critical for both informing broad country and district level

targets set by UNAIDS and others as well as local community based outreach programs.
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National organizations use the larger scale FSW size estimates to properly fund programs

to implement HIV prevention and treatment services. The cell-level FSW size estimates are

useful for implementing community-based programs like short 30-minute session to teach

FSW to negotiate condom use (Kerrigan et al., 2015). Furthermore, fine-scale mapping can

further improve the distribution of HIV services. Access to these services is often unequal,

resulting in immediate access for some but long wait times, up to years, for others (Joint

United Nations Programme on HIV/AIDS, 2021).

It is important to note that FSW may also work at multiple venues and thus be counted

at multiple venues, and FSW who do not work at venues are not counted. Because of this,

our goal was not to map the location of all FSW in Malawi, but to map the FSW who attend

venues. It is realistic that one may encounter the same FSW at two different venues on two

different days due to the mobility. The Malawi PLACE study minimized this impact by

asking for the number of FSW who visit the site between 11 p.m. and 2 a.m. on Saturday

night. By modeling this data directly, our results also reflect this possibility. However, our

analysis does not address FSW net migration across multiple years. FSW do not remain in

one location, and major changes can take place due to key events, like the introduction of

new policy measures which affect the operation of venues. Thus, our analysis and results

provide a reliable map for 2016 and 2017, the time frame of the PLACE study, but do not

accurately portray the uncertainty in estimates for other years.

The sampling probabilities πd[i] could be refined if a more sophisticated sampling process

was used and recorded. Our model can also solve the problem of nonuniform sampling in

presence-only studies. Consider a typical presence-only data set where observations come

from respondent reports. In these cases, more frequently traveled areas generate more re-

sponses. If some measure of “popularity” can be created for each cell, then our ZINB model
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naturally accounts for the varying levels of exposure across the domain. This approach is

more natural and theoretically justified given the assumed model than other presence-only

approaches, especially those that require choosing pseudo-absences in complicated ways.

The model could also be extended to model venue size and venue count jointly. How-

ever, there does appear to be very little correlation between venue size and venue count

after accounting for the covariates and this would greatly increase the computation time.

Another question that arises is whether interviewing more venues or recording the loca-

tions of unvisited venues offers better predictive power. For example, if the survey team can

skip an interview at one venue in order to record the location of ten more unvisited venues,

would the size of prediction confidence intervals increase or decrease? This is an interesting

follow-up question that has real-world application for future sampling procedures.
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Appendices

A Proofs

A.1 Proof of Proposition 1

Proof. Let Y and X be as described in Proposition 1. Then the pmf of Y , the thinned

process, is given by,

P (Y = y) =
∞∑
x=0

P (Y = y|X = x)P (X = x)

=
∞∑
x=y

(
x

y

)
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)(
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)y (
φ

πµ+ φ

)φ
,

which is exactly the negative binomial pdf with mean πµ and dispersion φ.

A.2 Proof of Proposition 2

Proof. Let Ỹ , Z, X, X∗, and Y be as described in Proposition 2. First, let us construct a

zero-inflated distribution with the π-thinning of X, Y ∗ = (1− Z)X∗ = (1− Z)
∑X

i=1 Iy∗,i.

Second, consider the π-thinning of the original zero-inflated distribution, Y =
∑Ỹ

i=1 Iy,i =

34



∑(1−Z)X
i=1 Iy,i. Conditioning on Z for both distributions, we find

P (Y ∗ = y|Z = 0) = 1− p

P (Y ∗ = y|Z = 0) = P

(
X∑
i=1

Iy∗,i = y

)
p

and

P (Y = y|Z = 0) = 1− p

P (Y = y|Z = 0) = P

(
X∑
i=1

Iy,i = y

)
p

Since Iy∗,i
D
= Iy,i, it follows that Y ∗

D
= Y .

A.3 Proof of Proposition 3

Proof. Let Ỹ , Y , and Ik be as defined in Theorem 3. From Proposition 2, Y is also

a zero-inflated random variable, Y = (1 − Z)X∗, where X∗ =
∑X

i=1 Ix,i, Ix,i ∼ Bern(π).

From Proposition 1, X∗ ∼ NegBin(mean = πµ, dispersion = φ). Thus, Y is a zero-inflated

negative binomial negative binomial, with negative binomial mean πµ and dispersion φ.
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B Additional Diagnostics

Table 3: Posterior predictive p-values for the complete districts.

Test Statistics Venue Count Venue Size
Positive Mean 0.537 0.546
Positive Standard Deviation 0.560 0.514
Over-dispersion index 0.566 0.508
Maximum 0.496 0.584
Proportion of Zeros 0.482 0.483

(a) (b) (c) (d)

Figure 8: Diagnostic plots for venue size and count. Subplots (a) and (b) concern the venue
size while subplots (c) and (d) concern the venue count. (a) and (c) are scatter plots of
average predicted values against the observed predicted counts. (b) and (c) are hanging
rootograms and plot the square roots of the counts against the response variable. The
observed counts are shown as light gray bars while the expected counts and corresponding
uncertainty are shown as a black line with dark gray shadow.
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