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Abstract

The Network Scale-up Method (NSUM) uses social networks and answers to “How
many X’s do you know?” questions to estimate hard-to-reach population sizes. This
paper focuses on two biases associated with the NSUM. First, different populations
are known to have different average social network sizes, introducing degree ratio
bias. This is especially true for marginalized populations like sex workers and drug
users, where members tend to have smaller social networks than the average person.
Second, large subpopulations are weighted more heavily than small subpopulations
in current NSUM estimators, leading to poor size estimates of small subpopulations.
We show how the degree ratio affects size estimates, provide a method to estimate
degree ratios without collecting additional data, and demonstrate that rescaling size
estimates improves the estimates for smaller subpopulations. We demonstrate that
our adjustment procedures improve the accuracy of NSUM size estimates using sim-
ulations and data from two data sources.

Keywords: Size estimation, popularity factor, degree ratio, key populations, aggregated
relational data.

1

ar
X

iv
:2

30
5.

04
38

1v
1 

 [
st

at
.A

P]
  7

 M
ay

 2
02

3



1 Introduction

The Network Scale-up Method (NSUM) has emerged as a popular and efficient way to esti-

mate the size of hard-to-reach populations like female sex workers, drug users, and men who

have sex with men. These hard-to-reach populations are of critical importance to solving

several global health problems, including meeting UNAIDS HIV-related targets (UNAIDS,

2021). These populations are at higher risk of contracting and spreading HIV than the

general population while simultaneously suffering from marginalization and negative social

stigma. The NSUM estimates the size of these populations using survey questions of the

form “How many X’s do you know,” where X includes subpopulations with known sizes

and subpopulations of interest with unknown sizes, like female sex workers (Bernard et al.

(1989)). These survey responses are known as aggregated relational data (ARD). While

some research on ARD concerns the estimation of network structures (Breza et al., 2020),

we focus on the role ARD play in the NSUM to estimate hard-to-reach subpopulation sizes.

Researches have proposed several modeling improvements to better capture the complexity

of the underlying aggregated relational data, including those by Zheng et al. (2006), Maltiel

et al. (2015), Teo et al. (2019), and Laga et al. (2023). These approaches aim to either

better understand underlying network properties or improve population size estimates from

NSUM models by incorporating underlying network properties into the model.
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There has also been significant progress towards improving NSUM estimators by multi-

plying size estimates by bias adjustment factors. Traditional NSUM models often produce

biased results when respondents are more or less likely to know people from certain popu-

lations (barrier effects), do not know everything about their social contacts (transmission

error), or cannot accurately recall everyone in their social network (recall error). Salganik

et al. (2011) proposed the game of contacts, which involves interviewing members of the

hard-to-reach population in order to estimate the transmission error. One then divides the

NSUM population size estimate by the estimated transmission error in order to correct for

the fact that respondents do not always know what groups individuals in their social net-

work belong to. Haghdoost et al. (2018) provide a detailed review of methods to estimate

scaling factors related to the transmission error. Feehan and Salganik (2016) also show

that their proposed generalized scale-up estimators is equal to the basic scale-up estimator

multiplied by three adjustment factors and propose several approaches to correct for these

factors.

We briefly review the NSUM subpopulation size estimator proposed in Killworth et al.

(1990), which we refer to as the MLE estimator (see McCormick (2020) or Laga et al.

(2021) for a comprehensive review). Assuming that we know the true degrees, di, or are

able to consistently estimate them from the ARD, the subpopulation size estimate for some
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subpopulation H is given by:

N̂H = N

∑n
i=1 yiH∑n
i=1 di

, (1)

where yiH denotes the number of people respondent i reports knowing in subpopulation H,

di is the degree of respondent i, N is the total population size, and NH is the population

size of H.

We propose a joint approach to solve two problems of the MLE estimator: (1) the

subpopulation size estimator is biased when the average social network size of members of

the subpopulation are larger or smaller than the general population, and (2) the estimator

implicitly weights known subpopulations with larger size more than known subpopulations

with smaller size. Our approach conveniently relies on only the original ARD, allowing

researchers to obtain more accurate size estimates without collecting additional data like

those needed for the game of contacts and the generalized scale-up estimator.

The rest of this paper is organized as follows. First, Section 2 provides additional back-

ground information about the degree ratio and presents the bias of the MLE estimator

under certain conditions. Then, in Section 3, we introduce our approach to estimating

the degree ratio using only the original ARD responses. Section 4 discusses scaling MLE

estimates to correct for different known subpopulation sizes. We combined the two correc-

tion procedures in Section 5. We demonstrate the utility of both of these approaches with
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both simulated (Section 6) and two real (Section 7) ARD surveys. Finally, we close with a

discussion in Section 8.

2 Background

We first review model properties of the MLE estimator. Feehan and Salganik (2016)

show that the MLE estimator is equivalent to their generalized scale-up estimator only

when multiplied by three adjustment factors. The degree ratio adjustment factor arises

because some populations have larger or smaller social network sizes on average than other

populations. The authors define the degree ratio, δF , as

δF =
avg # connections from a member of H to F

avg # connections from a member of F to the rest of F
=
d̄H,F

d̄F,F
,

where F refers to the frame population, i.e. the collection of individuals who may be

included as respondents in the ARD survey. Thus, if the degree ratio is 0.5 (i.e. there are

only half as many links from H to F as there are from F to F), then the MLE estimator is

one half the size of the generalized scale-up estimator. Since the MLE estimator implicitly

assumes the average degrees of all subpopulations are identical, the estimator misattributes

the small number of links to a small subpopulation size, rather than to small degrees. In

order to estimate these adjustment factors, the authors propose collecting an additional
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ARD survey given to members of the hard-to-reach population, called enriched ARD.

While we recognize the utility of enriched ARD, there are three significant limitations.

First, enriched ARD is often prohibitively expensive to collect. The low cost and easy im-

plementation of the NSUM are two of its key benefits. Collecting enriched ARD therefore

undermines this advantage, making only well-funded studies able to collect the additional

data. Second, it is impossible to collect enriched ARD on impossible-to-reach subpopula-

tions such as individuals who died in an earthquake. Finally, it is inconvenient or impossible

to collect enriched ARD for previous ARD studies. Therefore, the methods proposed in

Feehan and Salganik (2016) can only be used for ARD moving forward and cannot correct

for the biases in existing ARD surveys that did not already collect enriched ARD. Instead,

we propose the first method to estimate the degree ratio using only the original ARD

responses, allowing researchers to easily correct for bias introduced by the degree ratio.

We present two related findings connecting the bias of the MLE estimator to the degree

ratio. For the following results, we assume perfect link reporting (i.e. no transmission error

or recall error), that the respondents represent a simple random sample S of size n from the

general population of size N , and that the frame population F is the general population.

In this case, the inclusion probability for each respondent i is πi = n/N . We consider two

estimators, where either (1) the di are fixed and known, or (2) the di are estimated using
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the L known subpopulations. In the first case, we can represent the MLE estimator as

N̂H =

∑
i∈S(yiH/πi)

1
N

∑
i∈S(di/πi)

, (2)

while the second case takes the more complicated form given by

N̂H =

∑
i∈S(yiH/πi)

1
N

∑
i∈S

[(∑L
k=1 yik/

∑L
k=1Nk

)
/πi

] . (3)

Using these estimators, we present the following propositions, where the proofs are shown

in the Appendix.

Proposition 1. Consider the size estimate N̂H in Equation (2), obtained from a survey

with perfect link reporting and from a simple random sample of respondents. Then given

known di, the bias of the unknown size estimate is approximately given by

Bias(N̂H) ≈ NH

(
1− d̄H

d̄F

)
,

where d̄H denotes the average degree of individuals in the hidden subpopulation and d̄F

denotes the average degree of individuals in the frame population.

Proposition 2. Consider the size estimate N̂H in Equation (3), obtained from a survey

with perfect link reporting and from a simple random sample of respondents. Then given

that the di are estimated using the remaining L known subpopulations in the survey, the
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bias of the unknown size estimate is approximately given by

Bias(N̂H) ≈ NH

(
1− d̄H

∑L
k=1Nk∑L

k=1 d̄kNk

)
,

where d̄H denotes the average degree of individuals in the hidden subpopulation and d̄F

denotes the average degree of individuals in the frame population.

These results show that when the true degrees are known, the bias depends only on the

true unknown subpopulation size and the ratio of the average degrees between the unknown

subpopulation and the frame population, while the bias of the estimator when the degrees

are also estimated additionally depends on the remaining known subpopulation sizes and

the average degrees of individuals in each known subpopulation size. Proposition 2 also

shows that the accuracy of the unknown size estimate depends on the specific relationship

between the average degrees in subpopulations and the sizes of the subpopulations, and

relatively large or small subpopulations will introduce more bias when paired with relatively

large or small average degrees.

The degree ratio can significantly bias NSUM subpopulation size estimates. Shelley

et al. (1995) found that HIV positive respondents and respondents who were dialysis pa-

tients had networks which were only about 2/3 the size than those of the average respondent

in their survey. Therefore, given perfect responses to ARD questions, the Killworth et al.

(1990) MLE estimator would estimate the size of these two subpopulations to be about
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2/3 of the true size. The degree ratio may be more influential for even more stigmatized

populations like sex workers or for more social populations like priests and doctors. Thus,

our proposed approach to estimate the degree ratio is critical to improve estimates from

the most commonly used NSUM estimator.

3 Degree Ratio Adjustment

Here we propose a method to correct for the bias present in MLE estimator. It would be

sufficient to know d̄k for all known and unknown subpopulations. However, these average

degrees are unknown, making a direct approach impossible. Thus, our goal is to estimate

the d̄k in order to produce an adjustment factor for N̂H .

First, we propose building a degree ratio adjustment based on the results in Proposition

1. Given that the di need to be estimated in NSUM studies, it is intuitive to build an

adjustment factor with all d̄k based on the results in Proposition 2. However, we have

found in practice that the more complicated form of the bias resulting from estimating di

leads to poor estimates, despite the sounder theory. The issue arises because building an

adjustment factor based on Proposition 2 involves estimating K average degrees (one for

the hidden subpopulation and L for the known subpopulations). The difficulty associated

with estimating each average degree compounds to form an adjustment factor that does
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not work well in practice. On the other hand, while the theoretical bias presented in

Proposition 1 ignores the uncertainty of the di estimates, the bias is comprised of only two

average degrees, the same one for the hidden subpopulation and an overall average degree

associated with the entire frame population. Thus, while an adjustment factor based on

Proposition 2 should theoretically outperform an adjustment factor based on Proposition

1, the approach we present below relies on the results from the estimator constructed

assuming that the di are known.

For the remainder of this paper, we let δH = d̄H/d̄F , where we depart from the original

notation from Feehan and Salganik (2016) to emphasize that the degree ratio (i) exists for

both the subpopulations with known size and the hard-to-reach subpopulations, and (ii)

varies across subpopulation.

To adjust for degree heterogeneity while avoiding sampling members of the hard-to-

reach populations, we propose a novel method to estimate the degree ratio using only

the original ARD, completely avoiding spending more resources on surveys. The basic

assumption of our approach is that individuals who are “close” to a group have similar

degrees to members of that group. This assumption, which we call the degree-closeness

assumption, is supported by the observance of homophily in social networks across a number

of different studies. In order to define who is close to a group, we rely on the latent surface
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model for networks using ARD (McCormick and Zheng, 2015), hereafter referred to as the

ARD latent surface model.

3.1 Approach

McCormick and Zheng (2015) show that their ARD latent surface model consistently esti-

mates the position of ARD respondents and subpopulations on a hypersphere. The model

assumes that the ARD responses for respondent i and subpopulation k follows

yik|di, βk, ζ, ηk, θ(zi,νk)

∼ Poisson

(
diβk

(
Cp+1(ζ)Cp+1(ηk)

Cp+1(0)Cp+1(
√
ζ2 + η2k + 2ζηkcos(θ(zi,νk)))

))
,

where di is the degree of respondent i, βk is the prevalence of subpopulation k, ζ and ηk

are scaling factors, zi is the latent position of respondent i of the latent surface, νk is the

latent position of the center of subpopulation k, θ(zi,νk) is the angular distance between the

respondent’s position and the center of subpopulation k, p is the dimension of the latent

surface, and Cp+1(·) is the normalizing constant of the von-Mises Fisher distribution.

Thus, after fitting the ARD latent surface model to any ARD, we are able to calcu-

late the distance between all survey respondents and all subpopulations included in the

survey. Based on this formulation, we say that an individual i is closer than individual j

to subpopulation k if θ(zi,νk) < θ(zj ,νk). For simplicity, we denote the distance matrix as
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Θ with indices θi,k, where θi,k represents the estimated distance between respondent i and

subpopulation k.

Based on Θ, we estimate δk for all subpopulations. First, we estimate d̄F as the mean

estimated degree all respondents in the ARD survey, i.e.,

ˆ̄dF =
1

n

n∑
i=1

d̂i, where d̂i = N ·
∑

k∈known yik∑
k∈knownNk

are obtained from the first stage of the Killworth et al. (1998) two-stage procedure obtained

with all known subpopulations.

In order to estimate the numerator of the degree ratio, d̄H , we rely on the degree-

closeness assumption. Since we do not know whether respondents are a member of sub-

population k, we are unable to estimate d̄k directly. Instead, we estimate d̄k by averaging

the degrees of respondents that are close to subpopulation k. One could take several ap-

proaches to obtain these estimates. One approach is to calculate a weighted average of

d̂i based on their distances Θ1:n,k, where 1 : n, k indexes over the distances between all

respondents and subpopulation k and the weights are larger for respondents with smaller

distances. Another approach is to use the P smallest distances for each subpopulation and

average the degrees of these P respondents, where P is a user-specified value. Similarly,

we could define a separate Pk for each subpopulation. In our studies, we found that the

weighted approach is more robust to outliers with extremely large or small degrees, while
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the separate Pk approach offers the most accurate results when Pk is chosen accurately.

In order to balance the robustness of the weighting procedure with the potential accuracy

of using the smallest Pk distance, in Section 3.2 we propose classifying the respondents as

either close or not based on the estimated distances. Then, ˆ̄dk is calculated as the average

degree of respondents who are classified as close to subpopulation k.

To summarize, our proposed approach to estimate δk for all subpopulations given only

the original ARD is as follows:

1. Fit the ARD latent surface model on the ARD, Y , with M posterior samples.

2. Estimate the distance matrix Θ̂ as the posterior mean of the distance matrices Θm

for sample m.

3. For each subpopulation k:

(a) Classify nclose,k respondents as close or not by each column of Θ̂. Assign these

respondents to class Ck.

(b) Calculate δ̂k =
(

1
nclose,k

∑
i∈Ck

d̂i

)
/
(

1
n

∑n
i=1 d̂i

)
.

Alternatively, if desired, the median or maximum a posteriori could be used to estimate

Θ̂, consistent with the Bayesian framework.
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Given the sociological interest in the degree ratio for different subpopulations, we rec-

ommend estimating δ̂k for all subpopulations of interest in the ARD survey. However, given

that the true sizes are known for all known subpopulations, it only makes sense to adjust

the size estimates of the unknown subpopulations by N̂adj
H = N̂MLE

H /δ̂H .

The question remains, how do we classify respondents as close?

3.2 Classifying Respondents as Close

We propose a classification function based on the range of estimated distances for each

subpopulation. Specifically, denote the minimum and maximum of the kth column of Θ̂ as

mink and maxk. Then for a given grouping factor ∆k, a respondent is classified as close and

belongs to class Ck if θ̂i,k < [mink + ∆k(maxk −mink)]. Thus, we partition the range of

estimated distances for each subpopulation as close or not, i.e. the closest X% of distances,

rather than classifying the closest X% of respondents. This approach naturally handles

different distributions of estimated distances across the subpopulations.

We recommend choosing ∆k via either visualizations of the clusters as a function of the

estimated distance or using leave-one-out predictive performance with the subpopulations

with known Nk. Specifically, we propose the following two approaches.

Visualizations: First, we propose choosing the number of clusters based on visual-
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izations like those in Figure 1. For each subpopulation, the user may choose a ∆k which

produces a reasonable and intuitive division between the close and distant respondents. In

many situations, there is no obvious choice for ∆k. Despite this, we still find visualizations

to be one of the best approaches to choosing ∆k, as it provides a straightforward way to

vary ∆k for each subpopulation k, including the subpopulations with unknown size.

Predictive performance: Alternatively, we propose using predictive performance to

select ∆k. Specifically, in order to estimate ∆k for subpopulation k, one should select the

∆k which results in the best predictive performance of the remaining known subpopula-

tions (for an unknown subpopulation u, all known subpopulations will be used), where

the original MLE size estimates are obtained by N̂k = N(
∑n

i=1 yik)/(
∑n

i=1 d̂i), where the

d̂i are still estimated using all known subpopulations. While any metric may be used, we

recommend metrics that standardize by size, such as the mean absolute percent error (de-

fined as (actual - predicted) / abs(actual)), which does not weight the predictive accuracy

of large subpopulations more than the predictive accuracy of small subpopulations. For

this reason, we do not recommend using metrics like root mean squared error. Thus, the

metric is optimized for ∆k ∈ (0, 1), such that the approximate leave-one-out predictive

performance is minimized.
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4 Scaling Procedure

From the numerator of Equation (1), the larger yiH values typically associated with larger

subpopulations have more influence on N̂H than the smaller yiH values associated with

smaller subpopulations. To correct for this, we propose rescaling size estimates using

equally weighted subpopulations, regardless of subpopulation size. We show that this

scaling is trivial to apply in practice but can lead to substantially more reasonable size

estimates.

While traditional NSUM size estimates, including those from the Killworth et al. (1990)

MLE estimator, directly produce interpretable values on the correct scale, these methods

can still benefit from additional scaling. Bayesian estimators that do not fix Nk for the

known subpopulations, like those of Zheng et al. (2006) and Laga et al. (2023), instead

scale size estimates after MCMC sampling using some function involving all or a subset

of the known sizes. We have found that the size estimates of the Overdispersed model

proposed by Zheng et al. (2006) are almost identical to the leave-one-out size estimates of

the Killworth et al. (1990) MLE under certain scaling conditions. However, we have also

found that slight modifications of the weighting procedure can significantly improve the

accuracy of size estimates of relatively small subpopulations while only slightly decreasing

the accuracy of size estimates of relatively large subpopulations. Based on these findings
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and the fact that hard-to-reach populations of interest are typically smaller than most

known subpopulations used in ARD surveys, we propose rescaling Killworth et al. (1990)

MLE size estimates by correcting for different known subpopulation sizes.

We propose scaling all subpopulation sizes using all nknown known subpopulations,

weighted equally, instead of proportional to size like traditional NSUM estimators do,

because the importance of a group is not necessarily proportional to the population size.

This first requires producing leave-one-out size estimates for the known Nk. Next, we define

a scaling constant C by

C =
1

nknown

∑
k∈known

(
N̂k

Nk

)
. (4)

and scale the subpopulation size estimates by N̂ scaled
k = N̂k/C. Similarly, we scale the

degree estimate for respondent i by d̂scaledi = d̂i · C. As is standard in current NSUM

studies, the corresponding standard errors can be calculated via bootstrap.

5 Combined Procedure

Given the degree ratio adjustment and scaling procedure described above, a natural ques-

tion is whether and how to combine the two methods. Specifically, we could choose one of

the four following approaches: (i) adjust for the degree ratio only, (ii) scale the estimates

only, (iii) adjust for the degree ratio first and then scale the estimates, or (iv) scale the
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estimates first and then adjust for the degree ratio. Based on the analysis of two real ARD

studies (Section 7), we propose researchers implement the fourth option to scale the esti-

mates first and then adjust for the degree ratio. To summarize, the proposed methodology

to estimate the unknown size of a subpopulation is presented in Algorithm 1.

Algorithm 1: Scaling and degree ratio adjustment combined procedure

Result: Scaled and adjusted NH estimates

Set nknown equal to the number of subpopulations with known sizes Nk;

Estimate d̂i = N

∑
k∈known yik∑
k∈knownNk

for all respondents i using all known subpopulations;

Get approximate leave-one-out size estimates for known subpopulations,

N̂k = N

∑n
i=1 yik∑n
i=1 d̂i

;

Calculate C =
1

nknown

∑
k∈known

(
N̂k

Nk

)
;

Scale approximate leave-one-out size estimates for known subpopulations and

unknown subpopulation, N̂ scaled
k = N̂k/C and N̂ scaled

H = N̂H/C;

Scale estimated degrees, d̂scaledi = d̂i · C;

Choose ∆H and CH for the unknown subpopulation via either visualization or

leave-out-one predictive performance;

Calculate δ̂H =
(

1
nclose,u

∑
i∈CH

d̂scaledi

)
/
(

1
n

∑n
i=1 d̂

scaled
i

)
;

Adjust scaled unknown subpopulation size estimate, N̂ scaled,adjusted
H =

N̂ scaled
H

δ̂H
;

Intuitively, scaling first and then adjusting for the degree ratio appears to result in the
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most accurate estimates because the degree ratio approach relies on stronger assumptions

than the scaling approach. Specifically, the scaling approach is designed to correct for the

fact that empirical MLE size estimates underestimate large subpopulations and overesti-

mate small subpopulations, regardless of the underlying reason. On the other hand, the

degree ratio approach works well when the remaining bias is due to the difference in average

degrees and when we are able to accurately estimate that bias based on the behavior of

the other subpopulations. For example, respondents often over-report and under-report

how many people they know in small and large subpopulations, respectively, introducing

recall error. By first correcting for other biases like this recall error through scaling, the

degree ratio approach is more likely to estimate the actual degree ratio. However, empirical

evidence still suggests that the scaling corrects for some of the degree ratio, based on the

results presented later in Table 1. If the scaling was independent of the true underlying

degree ratio, we would expect the improvements of the degree ratio adjustment to improve

the size estimates equally well regardless of order.

While the combined procedure could be used to also modify the population size esti-

mates for the known subpopulations, in a practical setting this does not benefit the re-

searcher because the true population sizes are already known. However, we still encourage

researchers to estimate the δ̂k if the degree ratio is of scientific importance for the known
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subpopulations. One example would be for the “priest” subpopulation associated with

the Rwanda Biomedical Center/Institute of HIV/AIDS, Disease Prevention and Control

Department (RBC/IHDPC) et al. (2012) NSUM study. While we remove the “priest” sub-

population from our analysis below in order to demonstrate that our procedure still works

after removing highly influential data points, the combined procedure did significantly im-

prove the NSUM size estimates for “priest,” and the corresponding degree ratio estimate

supports the previous findings of McCarty et al. (2001) that ARD surveys given to clergy

yielded larger average network sizes than ARD surveys given to a representative sample.

While we proposed the above methodology as a general approach to correct for the de-

gree ratio, in practice we recommend using caution or avoiding adjusting the size estimates

for subpopulations corresponding to names like “Michael” or “Kristina” in the McCarty

et al. (2001) ARD survey. While the popularity of certain names may be related to age and

similar demographics, we find that empirically the association is less pronounced, and thus

they have less influence on the degree ratio, than other behavioral factors. Applying the

degree ratio correction in settings with weak associations risks correcting for spurious rela-

tionships in the data rather than for true signals. Furthermore, the NSUM typically more

accurately estimates the size of name related subpopulations than other subpopulations.

We demonstrate in Section 7 that our proposed methodology significantly improves size es-
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timates for all non-name related subpopulations. In practice, one may also exclude certain

other non-name related subpopulations that are believed to violate the degree-closeness

assumptions.

6 Simulation Study

We simulate a network from a stochastic block model (SBM) with 800 respondents and 8

groups. We set each group size to be 100. The within-group connectivity (i.e. the diagonal

of the connectivity matrix) is given by 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, in order

to have a range of connectivity. All between-group connectivity probabilities are 0.05. In

this design, the first group with within-group connectivity of 0.05 is just as likely to form

ties to members of different groups and they are to form ties to members of their own

group.

In order to evaluate the model performance, we implement Algorithm 1, where the true

degrees are used since we do not work with large enough populations to have accurate

degree estimates, unlike for real applications. Specifically, we perform a leave-one-out

procedure, where we estimate the scaled and adjusted subpopulation for each subpopulation

sequentially, treating each successive subpopulation as unknown. For this simulation study

and for both real datasets, we ran the MCMC sampler for 30,000 iterations, removed the
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first 2000 points, and thinned each chain by 10, resulting in 2,800 posterior samples.

We fit the ARD latent surface model with p = 3 and fixed subpopulation 4, 5, and 7

on the latent sphere, well separated from each other. From this model fit, we calculated

Θ using the posterior mean of the estimated distances. We plot these estimated distances

against the true degree in Figure 1. The shape of the points denotes whether the respon-

dent is a member of that subpopulation. We find that on average, the model is able to

separate the respondents based on the estimated distance. Given the small with-in group

connectivity, the model does a relatively poor job of estimating the distances for group 1

compared to the other groups.

Next, we choose the grouping factors ∆k via predictive performance. We refer again to

Figure 1, where we note the color indicates whether respondents are classified as close or

not. For example, for the second facet, we observe that the classification divides the true

members into two separate groups instead of classifying them together. In this instance,

using a larger ∆k chosen by visualization may do a better job of separating the data. On

the other hand, for the third facet, we see that that the classification actually correctly

classifies all members of the group as a single class. In practice, we do not observe the true

group membership, so we must only rely on the vertical distribution of the points.

Finally, the results for this simulation study error are shown in Figure 2, where the
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original Killworth et al. (1990) MLE estimates are shown in pink, our scaled and adjusted

estimates in green, and blue arrows are added on subpopulations where our adjusted es-

timates have smaller absolute relative error. In this study, we outperform the Killworth

et al. (1998) estimator for six of the eight subpopulations. The only population where the

scaled and adjusted estimate is worse than the original estimate is for the population that

violates the degree-closeness assumption since the within-group connectivity is equal to

the between-group connectivity. The percent reduction in average mean absolute percent

error is presented in Table 1. The scaled and adjusted size estimates are significantly closer

to the truth than the original Killworth et al. (1990) MLE estimates. It is clear in this

simulation study that our proposed method is able to consistently correct for the degree

ratio and substantially improve the existing Killworth et al. (1990) MLE estimates when

the degree-closeness assumption holds.

7 Network Scale-up Method Studies

In this section, we apply our scaling procedure to two real ARD surveys. We show that

despite its simplicity, the proposed scaling procedure substantially improves size estimates.

We also show that estimating and adjusting the degree ratio further improves size estimates.

We follow the same procedure outlined in the simulation study to evaluate the performance
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of our proposed methods, except we now estimate the degrees for all respondents using the

remaining known subpopulations before estimating the subpopulation sizes. This matches

the procedure used when estimating the unknown subpopulations, where only the ARD

responses in the known subpopulations are used to estimate the degrees and subpopulation

sizes for the unknown subpopulations.

Note that the final results presented below are after removing the subpopulations cor-

responding to names. Twelve of the 29 known subpopulations and 13 of the 22 known sub-

populations correspond to names in the McCarty et al. (2001) and Rwanda Biomedical Cen-

ter/Institute of HIV/AIDS, Disease Prevention and Control Department (RBC/IHDPC)

et al. (2012) surveys, respectively. For the Rwanda Biomedical Center/Institute of HIV/AIDS,

Disease Prevention and Control Department (RBC/IHDPC) et al. (2012) survey, we present

results both with and without the “priest” subpopulation because it appears to be an ex-

treme outlier in the dataset.

7.1 McCarty ARD Study

First, we apply our proposed scaling methods to the ARD first collected and presented

in McCarty et al. (2001). This dataset contains responses from 574 respondents about 32

subpopulations, 3 of which are unknown (individuals who are homeless, have been raped,
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or are HIV positive). We remove 53 respondents for having 1 or more missing responses

(47 of those 53 respondents had only 1 missing response), resulting in 521 respondents. As

the primary purpose of this work is to evaluate the performance of our proposed scaled

and adjusted estimator compared to the Killworth et al. (1990) MLE estimator, we do not

study the effect of removing these respondents with missing data.

We compare the final scaled and adjusted size estimates for the 17 remaining subpopu-

lations against the original Killworth et al. (1990) MLE size estimates in Figure 3a. For 9

of the 17 known subpopulations, our scaled and adjusted estimates are closer to the truth.

The calculated grouping factors ranged from 0.70 to 1.97. For 6 of the 9 subpopulations,

the improvement is reasonably substantial, compared to relatively small errors introduced

for the remaining 8 subpopulations. We also compare the percent reduction in average

mean absolute percent error in Table 1. Prior to scaling and adjusting, the Killworth

et al. (1990) MLE significantly overestimates the size of relatively small subpopulations,

while after scaling and adjusting there is very little relationship between the estimated bias

and the size of the subpopulation. For the McCarty ARD survey, our proposed methods

greatly outperform the original Killworth et al. (1990) MLE estimator, at only the cost of

additional computing time.
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7.2 Rwanda Meal ARD Study

Next, we consider the Rwanda Meal ARD survey (Rwanda Biomedical Center/Institute of

HIV/AIDS, Disease Prevention and Control Department (RBC/IHDPC) et al., 2012; Fee-

han et al., 2016). In 2011, researchers collected ARD from 4,669 respondents in Rwanda in

order to estimate the size of four key populations, female sex workers (FSW), male clients

of sex workers (MCSW), men who have sex with men (MSM), and people who inject drugs

(IDU). Rwanda Biomedical Center/Institute of HIV/AIDS, Disease Prevention and Con-

trol (RBC/IHDPC) and their partners require accurate size estimates of these unknown

subpopulations in order to plan and implement efficient HIV prevention strategies for cur-

rent HIV cases and understand the trend of HIV cases across time. As discussed in Laga

et al. (2021) and McCormick (2020), the NSUM can efficiently and cheaply estimate the

size of multiple key populations simultaneously by adding additional questions to an exist-

ing survey, making the NSUM a natural choice for the RBC/IHDPC to better understand

these key populations.

One of the primary motivations of the survey was to compare the results of NSUM

size estimates between two definitions of whether a respondent “knows” someone (Feehan

et al., 2016). The first definition, called the acquaintance definition, quantifies the “people

the respondent has had some contact with — either in person, over the phone, or on
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the computer in the previous 12 months.” The meal definition restricts the acquaintance

definition, quantifying the “people the respondent has shared a meal or drink with in the

past 12 months, including family members, friends, coworkers, or neighbors, as well as meals

or drinks taken at any location, such as at home, at work, or in a restaurant.” Feehan et al.

(2016) were able to show that estimates from the meal definition were consistently closer

to the known sizes than estimates from the acquaintance definition. While the authors

were unable to confidently extend this finding to subpopulations with unknown size (e.g.

FSW), it is not unlikely that these estimates for unknown subpopulations would also be

more accurate.

In order to use the dataset least prone to errors, for our analysis, we consider only

the dataset collected from the meal definition. Given that the meal definition implies a

stronger relationship between the respondent and their social connections, it is reasonable

to assume that the respondent knows more about each person they recalled, reducing the

transmission error. Furthermore, given that the pool of potential connections is smaller,

respondents should have an easier time recalling everyone in a given subpopulation, also

reducing recall error. In order to show that our proposed method accurately accounts for

the bias introduced by differences in average network sizes between groups, it is vital to

use a dataset that faces smaller biases from other sources.
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In this study, we analyzed responses from 2405 respondents about 22 known subpopula-

tions and the 4 key populations. Only one respondent was removed for a missing response

to how many people they know who are Muslims. The calculated grouping factors ranged

from 0.64 to 2.43, with a median of 0.86. The estimated distances for the known subpop-

ulations are plotted against the estimated degrees in Figure 3b, where the color denotes

whether the respondent is classified as close for each subpopulation. Compared to the SBM

simulation results, a larger percentage of respondents are classified as being close to the

corresponding subpopulation. Note that while not shown here, when estimating all sub-

populations, only 8 respondents are classified as being close to the priest subpopulation,

which the Killworth et al. (1990) MLE estimator estimates most poorly.

We also compare the relative error of the Killworth et al. (1990) MLE and our adjusted

estimates in Figure 4b, where the original Killworth et al. (1990) MLE estimates are shown

in pink and our adjusted estimates are shown in green. We add blue arrows on subpopula-

tions where the relative error of our adjusted estimate is smaller than the relative error of

the original Killworth et al. (1990) MLE estimate. Visually, it is clear that adjusting the

estimate via our approach significantly improves the overall performance of the Killworth

et al. (1998) estimator. Numerically, our adjusted estimates perform better in four of the

nine non-name and non-priest known subpopulations. However, the adjusted estimators
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perform significantly better than the Killworth et al. (1990) MLE estimator for those four

subpopulations, while only performing slightly worse for the remaining subpopulations.

Specifically, we find the mean absolute percent error drops from approximately 2.4 to 1.2

for the four subpopulations where our adjusted estimates perform better, while only increas-

ing from approximately 0.29 to 0.59 for the remaining five subpopulations. Furthermore,

our approach improved the size estimates of the four smallest subpopulations, suggesting

that our approach will likely improve the size estimates of the hard-to-reach subpopula-

tions as well. We present numerical results in Table 1, where scaling and adjusting reduced

the average mean absolute percent error 30%. With the “priest” subpopulation included,

the percent reduction in average mean absolute percent error is significantly better for all

proposed methods when compared to the Killworth et al. (1990) MLE estimates, reducing

the average mean absolute percent error by 64% across all non-name subpopulations. The

scaled and adjusted size estimates are substantially better when including the priest sub-

population because priests have significantly larger social networks than other members of

the population, emphasizing that our proposed methods works especially well when there

are clear differences in social network sizes across subpopulations (McCarty et al., 2001).
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8 Discussion

We have demonstrated through both simulations and through two data examples that in the

presence of homophily, our proposed scaling and degree ratio adjustment can substantially

reduce the bias of the Killworth et al. (1990) MLE estimator. However, it is important to

recognize that while our degree-closeness assumption does not hold for all subpopulations,

it is more likely to hold for the marginalized hard-to-reach populations we are primarily

interested in studying. Previous studies have shown that these marginalized populations

show substantial homophily. We rely on the performance of our proposed approach with

respect to the known subpopulations out of necessity since we are unable to access the

quality of NSUM estimators for the unknown subpopulations.

The key novelty of this paper is that our proposed methods solve two very difficult

problems related to popular NSUM estimators without using auxiliary data. Methods that

use auxiliary data may intuitively perform better than our combined procedure and we

encourage researchers to use additional data when available. However, collecting additional

data is often impossible, necessitating an approach that recycles the available data. The

scaling procedure in particular can be performed in a few seconds and significantly improve

initial NSUM size estimates.

Furthermore, as we presented in this work, NSUM models should be evaluated using
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performance metrics that do not favor large subpopulations. Metrics like root mean squared

error are dominated by these populations like “people who have diabetes” or “people are

twins” so that the accuracy of size estimates corresponding to populations like “people who

were murdered” or “people who committed suicide” are not influential.

As with all methods used to estimate the size of hard-to-reach subpopulations, it is dif-

ficult to understand, model, and account for all sources of bias. In some cases, accounting

for one source of bias may result in worse estimates if the other sources of bias are ig-

nored. Continued research is needed to understand how the different NSUM biases interact

together. Is it sufficient to account for each form of bias independently? We believe the

NSUM holds an important role in providing accurate, quick, and affordable size estimates

and urge future researchers to continue developing this promising method.
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9 Tables and Figures

Table 1: Percent reduction in average mean absolute percent error (MAPE) for the scaled

and adjusted size estimates for the SBM simulation, McCarty, and Rwanda Meal studies.

Percent reduction is calculated by 100∗ (MAPEMLE−MAPEscaled,adjusted)/(MAPEMLE)

Data Set Subpopulations Scaled and Adjusted

SBM Simulation All 40%

McCarty
All 52%

Non-names 59%

Rwanda Meal

All 21%

Non-names, with priest 64%

Non-names, no priest 30%
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Figure 1: Estimated latent distance to a subset of the subpopulations plotted against the

true degree on the x-axis. Each facet represents a different subpopulation. Members of

the subpopulation are plotted as open circles, while non-members are plotted as closed

triangles. Respondents classified as close are shown in pink, otherwise in cyan.
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Figure 2: Relative error point estimates for SBM size estimates from the raw Killworth

et al. (1990) MLE and scaled and adjusted Killworth et al. (1990) MLE estimates. Relative

error is calculated by 100 ∗ (Truth− estimates)/Truth. Subpopulations are ordered from

smallest estimated δ̂k to largest. Arrows are added on subpopulations where the scaled and

adjusted estimates have smaller relative error.
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Figure 3: Estimated latent distance plotted against the estimated degree on the x-axis

for the McCarty study (a) and for the Rwanda Meal study (b). Each facet represents a

different subpopulation. Respondents classified as close to the subpopulation are plotted

in pink, otherwise plotted in cyan. For visualization only, the estimated degrees are from

using all known subpopulations.

38



−8

−6

−4

−2

0

M
U

R
D

E
R

E
D

S
U

IC
ID

E

C
A

R
 A

C
C

ID
E

N
T

A
D

O
P

T
E

D

D
IA

LY
S

IS

JA
Y

C
E

E

A
ID

S

G
U

N
 D

E
A

LE
R

P
IL

O
T

O
P

E
N

 B
U

S
IN

E
S

S

P
O

S
TA

L 
W

O
R

K
E

R

JA
IL

E
D

N
AT

IV
E

 A
M

E
R

IC
A

N

O
V

E
R

 6
5

G
AV

E
 B

IR
T

H

T
W

IN

D
IA

B
E

T
E

S

Subpopulation

R
el

at
iv

e 
E

rr
or

Model

MLE

Scaled and 
Adjusted MLE

(a)

−4

−2

0

N
U

R
S

E
 O

R
 D

O
C

TO
R

M
A

LE
 C

O
M

M
U

N
IT

Y
 H

E
A

LT
H

W
ID

O
W

E
R

T
E

A
C

H
E

R

M
A

N
 D

IV
O

R
C

E
D

IN
C

A
R

C
E

R
AT

E
D

W
O

M
A

N
 S

M
O

K
E

M
U

S
LI

M

W
O

M
A

N
 G

AV
E

 B
IR

T
H

Subpopulation

R
el

at
iv

e 
E

rr
or

Model

MLE

Scaled and 
Adjusted MLE

(b)

Figure 4: Relative error point estimates for non-name subpopulations of McCarty (a)

and non-name and non-priest subpopulations of Rwanda Meal (b) size estimates from the

original Killworth et al. (1990) MLE and scaled and adjusted Killworth et al. (1990) MLE

estimates. Relative error is calculated by 100∗(Truth−estimates)/Truth. Subpopulations

are ordered alphabetically. Arrows are added on subpopulations where the scaled and

adjusted estimates have smaller relative error.
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Appendices

A Proofs

A.1 Proof of Proposition 1

Proof. Given perfect link reporting,

E

[∑
i∈S

(yiH/πi)

]
=

N∑
i=1

yiH =
∑
j∈H

dj = sum of degrees in subpopulation H (5)

and

E

[∑
i∈S

(di/πi)

]
=

N∑
i=1

di = sum of degrees in the frame population

The last equality in Equation (5) follows directly from the fact that the number of links

from the frame population to members of H in an undirected graph is equal to the number

of links from the members of H to the frame population, i.e. the sum of their degrees.

Therefore, the numerator is an unbiased estimate of the sum of the degrees of members of

H, and the denominator is an unbiased estimate of the average degree size in the frame

population. Then, since the ratio of two unbiased estimators is approximately unbiased

(Särndal et al., 2003), the expected value of the estimator in Equation (2) is approximately
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given by

E
[
N̂H

]
≈
∑

j∈H dj
1
N

∑N
i=1 di

= NH
d̄H
d̄F

= δHNH ,

where d̄H represents the average degree of members of H and d̄F represents the average

degree of all members of the frame population.

A.2 Proof of Proposition 2

Proof. Given perfect link reporting, the numerator remains unchanged from Proposition 1,

where

E

[∑
i∈S

(yiH/πi)

]
=

N∑
i=1

yiH =
∑
j∈H

dj = sum of degrees in subpopulation H.
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For the denominator, we have

E

{
1

N

∑
i∈S

[(
L∑

k=1

yik/
L∑

k=1

Nk

)
/πi

]}
=

1

N
∑L

k=1Nk

E

(∑
i∈S

L∑
k=1

yik/πi

)

=
1

N
∑L

k=1Nk

E

(
L∑

k=1

∑
i∈S

yik/πi

)

=
1

N
∑L

k=1Nk

(
L∑

k=1

N∑
i=1

yik

)

=
1

N
∑L

k=1Nk

(
L∑

k=1

∑
j∈k

dj

)

=
1

N
∑L

k=1Nk

(
L∑

k=1

Nkd̄k

)

Then, since the ratio of two unbiased estimators is approximately unbiased (Särndal et al.,

2003), the expected value of the estimator in Equation (3) is approximately given by

E
[
N̂H

]
≈ NH d̄H

∑L
k=1Nk∑L

k=1 d̄kNk

,

where d̄k represents the average degree of members of subpopulation k.
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