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Abstract

Aggregated relational data (ARD), formed from “How many X’s do you know?”
questions, is a powerful tool for learning important network characteristics with in-
complete network data. Compared to traditional survey methods, ARD is attractive
as it does not require a sample from the target population and does not ask re-
spondents to self-reveal their own status. This is helpful for studying hard-to-reach
populations like female sex workers who may be hesitant to reveal their status. From
December 2008 to February 2009, the Kiev International Institute of Sociology (KIIS)
collected ARD from 10,866 respondents to estimate the size of HIV-related groups
in Ukraine. To analyze this data, we propose a new ARD model which incorpo-
rates respondent and group covariates in a regression framework and includes a bias
term that is correlated between groups. We also introduce a new scaling procedure
utilizing the correlation structure to further reduce biases. The resulting size esti-
mates of those most-at-risk of HIV infection can improve the HIV response efficiency
in Ukraine. Additionally, the proposed model allows us to better understand two
network features without the full network data: 1. What characteristics affect who
respondents know, and 2. How is knowing someone from one group related to know-
ing people from other groups. These features can allow researchers to better recruit
marginalized individuals into the prevention and treatment programs. Our proposed
model and several existing NSUM models are implemented in the networkscaleup

R package.
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1 Introduction

Hard-to-reach populations are groups of people that are not easily sampled by commonly

used surveys, potentially due to their stigmatized status (e.g. female sex workers) or their

infeasibility to be reached (e.g. people who committed suicide). There is a long history

of developing methods to estimate the sizes of hard-to-reach populations, such as direct

survey estimates, capture-recapture, and venue-based sampling, but still no method has

emerged as the gold standard. UNAIDS/WHO outlined strengths and weaknesses of many

of the methods (UNAIDS and WHO, 2010). Direct estimates typically use random surveys

of the general population and calculate what percent of respondents belong to the hard-to-

reach population, but are inefficient or lead to biased results for small and hard-to-reach

populations. For reasonable sample sizes, many of these surveys do not even reach the

hard-to-reach populations, making it impossible to estimate the population size. Other

methods require working with members of the hard-to-reach populations directly, which

can lead to more accurate and precise estimates, but it is often difficult to directly contact

populations that desire to stay hidden due to poor treatment and negative social stigma.

Originally motivated by estimating the size of people who have died in the 1985 Mexico

City earthquake (Bernard et al., 1989), the network scale-up method (NSUM) avoids the

need for samples from the hard-to-reach population entirely, making it more convenient to

implement and shining a light on the scale of impossible-to-reach population. NSUM uses

aggregated relational data (ARD), which contains the answers to surveys with questions of

the form “How many X’s do you know?” The ARD is collected from the general population,

rather than from the target population.

The basic premise of the NSUM is that the number of people that respondent i knows
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in group k, denoted by yik, follows the scale-up equation given by

yik
di

=
Nk

N
, (1)

where di is the degree (or total number of people that respondent i knows), Nk is the

size of group k, and N is the total population size (Killworth et al., 1998b). This model

assumes that the probability that a member of respondent i’s social network belongs to

group k is proportional to the prevalence of k in the general population. Nk could be

estimated directly given yik’s, di’s and N . However, di is typically unknown and difficult

to estimate directly, requiring the models to estimate both di and Nk, either sequentially

or simultaneously. In order to first estimate di, the ARD also includes questions about

“known population” (e.g. people named John or postal workers, where the population sizes

Nk are known through census or other means). Note that we often use the terms “group”

and “subpopulation” interchangeably. In this manuscript, we primarily use “group” when

introducing the model, to recognize that in general not all NSUM applications are related

to subpopulations. When referring to our specific application study, we prefer the term

“subpopulation.”

The most popular basic NSUM model was proposed by Killworth et al. (1998b). It

assumes that the data come from a Binomial distribution given by

yik ∼ Binom

(
di,

Nk

N

)
. (2)

In order to estimate the unknown degrees and group sizes, the authors propose the following

two-stage procedure: Stage 1 estimates the unknown di as d̂i by maximizing the likelihood

L(di;y) =
L∏
k=1

(
di
yik

)(
Nk

N

)yik (
1− Nk

N

)di−yik
,
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with respect to di, where L denotes the number of groups with known Nk and the likelihood

involves only the known populations. Stage 2 involves maximizing the likelihood which

involves only the unknown Nk, denoted by Nu, i.e.

L(Nu;y, d̂) =
n∏
i=1

(
d̂i
yiu

)(
Nu

N

)yiu (
1− Nu

N

)d̂i−yiu
,

where n is the number of respondents. This Stage 2 is repeated independently for each

unknown group, i.e. there may be any number of Nu. There are other procedures to

estimate the unknown Nu, although the general strategy of using responses corresponding

to known Nk to estimate di and then back-estimating the unknown Nu remains the same.

After being introduced to UNAIDS as a promising method to estimate most-at-risk

people for HIV infection, many countries/cities have attempted to implement ARD surveys.

One of the largest surveys is the 2009 Ukraine survey, in which the Kiev International

Institute of Sociology (KIIS) collected ARD from 10,866 respondents aged 14 and above

from December 2008 to February 2009 to estimate the size of 8 HIV-related subpopulations

in Ukraine. The ultimate goal of the survey is to improve HIV response efficiency in Ukraine

with the help of accurate size estimates. The authors relied on the NSUM to estimate these

population sizes since existing methods like multiplier method and capture-recapture were

too resource-intensive to obtain accurate estimates for all of Ukraine and would require

studies in at least 60 settlements to obtain national size estimates (Paniotto et al., 2009).

Early frequentist models provided a solid foundation for quickly and easily estimat-

ing degrees and group sizes from ARD surveys (Killworth et al. (1998a), Killworth et al.

(1998b)). Recent Bayesian models have improved size estimates and answered important

scientific questions about social networks. Zheng et al. (2006) included additional overdis-

persion in the model through a negative binomial overdispersion parameter, both better
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capturing the variability in the data than the existing methods and providing an estimate of

the variation in respondents’ propensities to know someone in each group. Later, Maltiel

et al. (2015) aimed to model the NSUM biases (barrier effects, transmission error, and

recall error) directly through the priors, estimating the strength of each bias within the

groups. Most recently, Teo et al. (2019) included respondent covariates both about the

respondent (e.g. age, gender) and how the respondent felt about each unknown group

(e.g. what level of respect do you feel towards female sex workers) to adjust size estimates

and study how these covariates influenced the number of people the respondents knew in

each group. However, their model ignored the extra variability in the data and it resulted

in small uncertainty intervals, similar to the Killworth et al. (1998b) estimates. We refer

readers to Laga et al. (2021) for a more complete review of the existing NSUM models and

ARD properties.

Until now, all models assume that the response biases for a single participant is inde-

pendent across all groups. However, we conjecture that this is not the case. Zheng et al.

(2006) observed that the residuals from their model were correlated, and respondents who

knew individuals who had suffered from one negative experience (e.g. suicide or rape) were

more likely to know individuals who suffered from other negative experiences. We aim to

properly model the correlation structure to further improve NSUM estimates and answer

the sociological question of how different groups are related.

In the Ukraine survey, information about the respondents’ demographics and their

acquaintance to multiple known and unknown subpopulations is collected. To better utilize

all auxiliary information and learn more about the connections among subpopulations,

we propose a new ARD model that accounts for overdispersion, decomposes the biases,

and incorporates respondent characteristics, while also capturing the correlations between
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subpopulations. Our regression framework allows for more flexibility and ease-of-use than

the existing approaches and provides quantitative measures of how covariates influence the

number of people known in both known and unknown groups. The correlation estimates

from our model provide insight into how social networks form and can hint at how different

groups overlap in society. In addition, we propose various measures to assess the reliability

of the model estimates.

This paper is organized as follows. First, Section 2 describes the Ukraine dataset. We

introduce our proposed NSUM models in Section 3, along with a novel group size scaling

method. The benefits and limitations of the models are discussed and our modeling choices

are explained. We also show how the overall bias term in our model can be deconstructed

into the three NSUM biases. We establish empirical properties of our model in Section 4.

We fit our proposed model to the Ukraine dataset in Section 5. We discuss practical advice

for future collection and analysis of ARD in Section 6. Final remarks and discussion are

found in Section 7.

2 Ukraine Data

Of the Eastern European countries, Ukraine has the second highest rate of new HIV infec-

tions in the WHO European Region, motivating the study of key populations (European

Centre for Disease Prevention and Control/WHO Regional Office for Europe, 2017; Pan-

iotto et al., 2009). From December 2008 to February 2009, the Kiev International Institute

of Sociology interviewed 10,866 respondents aged 14 and above, asking “How many X’s

do you know?” questions about 22 known groups and 8 unknown groups (Paniotto et al.,

2009). We consider 4 of the 8 unknown subpopulations, women providing sexual services
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for payment over the last 12 months (FSW), men providing sexual services for payment

over the last 12 months (MSW), men who have sex with men (MSM), and people injecting

drugs over the last 12 months (IDUs), since these subpopulations belong to the World

Health Organization’s list of main key population groups vulnerable to HIV (World Health

Organization and others, 2016). Examples of the known groups include men aged 20-30,

women who gave birth to a child in 2007, and men who served sentences in places of im-

prisonment in 2007. Supplementary Table 1 lists the known and unknown groups and the

sizes of the known groups.

In addition to the ARD (Y ), respondents were also asked demographic questions about

their gender, age, education, nationality, profession, and whether they had access to the

internet (Z: individual characteristics), as well as “what level of respect” the respondent

believed there was in Ukraine for each group on a 1-5 Likert scale, where 1 represents very

low level of respect (X: individual by group properties). After removing respondents with

missing responses, the remaining sample has 9,241 respondents, which is 85.05% of the

original dataset1. Furthermore, based on the accuracy of leave-one-out size estimates for

the known groups, we keep only 11 of the 22 known groups, so for our analysis, n = 9, 241

and K = 15.

1We recognize the importance of understanding and accounting for the significant amount of missing

responses in our data. We examined several missing-data diagnostics and presented key findings in the

Supplementary Material Section 4. We found that while there is a relationship between some of the

covariates and the frequency of missing responses, this relationship is fairly weak and is subset to only a

few of the subpopulations, most notably the subpopulations related to gender and age but not any of the

unknown subpopulations. In general, we do not believe that removing the respondents with missing data

significantly affects our inference. It may be of interest to explore sophisticated methods to handle missing

data in ARD models.
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Figure 1: Barplots of the observed Ukraine ARD for men named Pavlo (a), people who

died in 2007 (b), and injection drug users (c). For visualization purposes only, the barplot

for 30 represents responses greater than and equal to 30.

There are significant differences between the distributions of responses across subpop-

ulations. Figure 1 shows frequency barplots for three subpopulations, men named Pavlo,

people who died in 2007, and injection drug users (IDUs). For men named Pavlo and

people who died in 2007, the average responses are relatively similar (2.11 and 2.98, re-

spectively). However, compared to men named Pavlo, respondents tend to know either 0

people who died in 2007, or several people who died in 2007 – there were roughly 1.4 times

as many respondents who knew 0 people who died in 2007 than respondents who knew 0

men named Pavlo, despite Pavlo having a smaller average response. In this situation, the

distribution of people who died in 2007 known by the respondents is more overdispersed

than the distribution of men named Pavlo known by the respondents. For the hard-to-

reach populations, the overdispersion is even more significant. Most respondents know 0

IDUs (92.6%), while some respondents report knowing 40, 50, 60, and even 130 IDUs. The
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distribution of responses indicates that there are likely significant barrier effects for certain

populations like IDUs that violate the random mixing assumption.

3 Models

In this section, we introduce our correlated NSUM model, discuss its properties, and de-

scribe the estimation procedure. We first introduce the ARD notation used in the remainder

of the manuscript. Given an ARD survey with n respondents about K groups, the number

of people that respondent i reports knowing in group k is yik. Thus, the ARD matrix

of responses Y is an n × K matrix. The demographics (e.g. age, gender, occupation,

etc.) are denoted by Z, where zij is the information about respondent i for variable j,

j ∈ {1, . . . , p}. In some surveys, respondents are also asked how they feel about members

in group k using questions of the form “what is your level of respect towards group k?”

The exact phrasing of the question can vary, but the answers are denoted X with entries

xik for respondent i and group k. The key distinction between Z and X is that Z is a

respondent-level feature while X contains information about the interaction between the

respondents and the groups. All columns of Z and X are centered to have mean zero.

3.1 The Correlated NSUM Model

Our correlated NSUM model is written as, for i in 1, ..., n, and k in 1, ..., K,

yik ∼ Poisson (exp {δi + ρk + βzi + αkxik + bik}) , (3)

δi ∼ N (0, σ2
δ ), ρk ∼ N (µρ, σ

2
ρ),

bi ∼ NK(µ,ΣK×K),
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where Σ = diag(τ )Ωdiag(τ ). One key feature of the model is that after accounting for the

covariate effects, we allow the biases (bik) to have group-specific variance (τk) and within-

person and between-group correlations (Ω). Driven by network features such as homophily,

the correlated bias indicates if someone knows more or less of a certain group of people,

he/she tends to know more or less of a similar group. The estimated correlation reveals

which groups have similarities. We can also separate the biases into the different terms

(barrier, transmission, and recall) after all parameters have been estimated, and these

details are shown in Supplementary Section 1. After scaling, di = exp(δi) represents the

degree of respondent i, and pk = Nk/N = exp(ρk) represents the prevalence of group k.

Depending on the application, the regression coefficients, β, could potentially be divided

into global ones (βglobal, those that are constant across groups) and group-specific ones

(βgroupk , those that vary with groups). This modeling choice allows researchers the flexibility

of determining whether each covariate affects the responses in the same way for each group.

Here we treat all the group sizes as unknown and estimate them. As discussed in Feehan

et al. (2021), the so-called “known” groups need to satisfy several conditions for them to be

reliably treated as “known,” including the sizes should be accurately known from census or

administrative data, correct identification of memberships, representativeness of the known

groups altogether, and several size requirements for each of them. In reality, most known

groups do not meet those conditions. As a result, as shown in Feehan et al. (2021), those

“known population method” lead to various biases by treating those population sizes as

known. Therefore, we choose to treat all group sizes as unknown. The known group sizes

are used to help scale the estimates as detailed in the next section.
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We complete the formulation with the following priors:

αk ∼ N (0, 100), βkj ∼ N (0, 100),

σδ ∼ Cauchy(0, 2.5)I(σδ > 0), µρ ∼ N (0, 100),

σρ ∼ Cauchy(0, 2.5)I(σρ > 0),

Ω1/2 ∼ LKJCholesky(2), τN,k ∼ Cauchy(0, 2.5)I(τN,k > 0),

µ = log

(
1/
√

1 + τ 2
N

)
, τ =

√
1 + τ 2

N .

Note that µ and τ are not sampled, and are only transformations of the sampled parameters

τN = (τN,1, . . . , τN,K). This parameterization is such that E(bik) = 1, a property shared by

the Gamma prior in the Zheng et al. (2006) overdispersed model. The half-Cauchy priors

on σδ and τN,k are recommended by Gelman (2006) to restrict the parameters away from

very large values.

3.2 Computation

We provide the networkscaleup R package for readers to implement our proposed model

(Laga et al., 2022). Parameters are estimated using Markov Chain Monte Carlo (MCMC)

via Stan. It is important to note that as presented above, the MCMC implementations

would have trouble producing unbiased results without prohibitively long sampling chains.

The hierarchical form of the model for the bias terms suffers from inefficient MCMC sam-

pling. Specifically, when the bi are all close to one another, the diagonal elements of

Σ = diag(τ )Ωdiag(τ ) will shrink towards 0. Then, since the diagonal elements of Σ are

small, bi can only take very small MCMC steps, keeping both bi close to one another and

the diagonal elements of Σ close to 0. To break this dependence between bi and Σ, the

model can be reparameterized through parameter expansion, which allows the size of the
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residuals to move independently of the variance parameters (Van Dyk and Meng, 2001;

Liu, 2003; Gelman, 2004; Gelman et al., 2008). Expanding our model, we reparameterize

the bias as

bi = µ+ diag(τ )Ω1/2εi, (4)

where Ω1/2 represents the lower-triangular Cholesky decomposition of the correlation matrix

Ω and εi ∼ N(0, I). By sampling εi instead of the bi directly, the values of bi can

comfortably jump around even when Ω1/2 is small because of the reparameterized error

terms εi.

3.3 Scaling

Here we introduce an equally important component of our proposed model, namely the

scaling procedure. In order to convert the ρk estimates to interpretable group size esti-

mates, Zheng et al. (2006) proposed a scaling strategy that relies on groups of rare names,

those believed to have the least biased ARD responses. However, this approach is dataset

dependent and may lead to significantly biased results. In their modeling of the McCarty

et al. (2001) data, there were several male and female names to use for scaling. In the

Ukraine data, there is only one group corresponding to a name, males named “Pavlo.”

A scaling procedure that depends only on this group would bias the results significantly,

as shown in Supplementary Figure 1. This is because the population size for men named

“Pavlo” is significantly overestimated, so scaling by “Pavlo” leads to underestimating all

other groups. On the other hand, in the McCarty et al. (2001) data, the average bias of

the rare female names is similar to the average bias of the remaining groups, which is a

necessary condition for this scaling method to work.
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3.3.1 Correlated Scaling

We propose a new scaling procedure that relies on scaling each group using correlated

groups with known sizes. The idea behind this approach is simply that correlated groups

have similar biases, so they should be scaled in a similar way. Specifically, we propose a

weighted scaling procedure: the higher the correlation between populations A and B, the

larger the weight A has on scaling B. Denoting the mth posterior sample for ρk and Ωi,k as

ρmk and Ωm
i,k, respectively, and letting nknown represent the number of groups with known

size, our scaling procedure is outlined in Algorithm 1 below.

Algorithm 1: Correlated Scaling

Result: Scaled ρ′k estimates

Set Nmc equal to the number of posterior samples;

for each k in 1:K do

for each m in 1:Nmc do

Set ω = (Ωm
k,1, . . . ,Ω

m
k,nknown

);

Set negative elements of ω = 0;

Set ωk = 0;

Scale ω such that the elements sum to nknown;

Cm = log
(

1
nknown

∑
k∈known

eρ
m
k ωk

Nk/N

)
;

ρ′mk = ρmk − Cm;

end

end

This scaling approach inherently corrects biases such as transmission effects without

requiring additional surveys like the game of contacts (Salganik et al., 2011). Collecting

additional data from each hard-to-reach groups is still the most promising approach, how-
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ever it is often infeasible, especially when estimating the size of several hard-to-reach groups

simultaneously (like in the Ukraine dataset). While ambitious, scaling sizes using corre-

lated groups has the potential to correct for large biases that would otherwise be impossible

to account for without these additional datasets.

4 Simulation Study

In this section, we implement a variety of simulation studies to better understand the

properties of our model and scaling procedures. In Section 4.1, we study how ignoring the

correlation structure affects other model parameters. In Section 4.2, we demonstrate the

utility of the correlated scaling procedure by simulating data from two realistic scenarios.

4.1 Missing Correlations

We simulate data from the correlated model in Equation (3) excluding covariates, where

K = 5, σδ = 0.7, ρk = log(2.5) for all k, τ = (2, 1.05, 0.7, 1, 1.2), and

Ω =



1 0.9 0.8 −0.05 0

0.9 1 0.75 0 −0.1

0.8 0.75 1 0 0

−0.05 0 0 1 0.85

0 −0.1 0 0.85 1


This correlation matrix is designed to replicate the situation in which there are two clusters

of groups, for example for stigmatized groups and for unstigmatized groups. In existing

ARD surveys, the number of respondents varies widely from around 200 to over 10,000,

so several different sample sizes are used. We perform the simulations at five different
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respondent sample sizes, n = 100, 300, 1000, 3000, and 10,000. We fit the datasets using

an uncorrelated version and the correlated parameterization.

When fitting models that do not estimate a group correlation matrix, the proposed

correlated scaling procedure is not possible, so we scale using all known group sizes after

standardizing by group size (i.e. so larger groups do not have more weight than smaller

groups). Specifically, we define a constant for each posterior sample m

Cm = log

(
1

nknown

∑
k∈known

eρ
m
k

Nk/N

)
, (5)

where known represents the set of known groups. For each posterior sample, we scale ρ′k

by ρ′mk = ρmk −Cm. This scaling procedure yields group size estimates that have an average

relative error of zero across all groups for each posterior sample.

We study the distribution of the point estimates from 100 simulations and the results

are shown in Figure 2. The points represent the mean of the estimates across the 100

simulations while the 95% intervals represent the upper and lower 2.5% and 97.5% quantiles

of the estimates. Across all sample sizes, ρ̂k estimates are biased when an uncorrelated

model is assumed, but the data come from a correlated model. The effects are larger when

the group variance τk is larger.

To further study the importance of accounting for the correlation structure, we also

perform simulation studies for two versions of the Zheng et al. (2006) models and two

versions of the Maltiel et al. (2015) models. Details are shown in Supplementary Materials

Section 5. We find that for NSUM models that sample random effects directly (Zheng et al.

(2006) Poisson model and Maltiel et al. (2015) barrier effects model (sampled version)),

the size estimates are biased when the ARD is correlated. In some cases, integrating out

the random effects can produce unbiased point estimates (the Zheng et al. (2006) negative
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Figure 2: 95% interval of posterior means of ρ across 100 simulations for the missing

correlation simulations. The true size is represented by the horizontal black line.

binomial model), while in other cases the integration does not improve estimates (the

Maltiel et al. (2015) barrier effects model (integrated version)). We conjecture that models

which have separate parameters to estimate the mean of the data and the overdispersion can

produce unbiased estimates when data are correlated, while models that have parameters

that influence both the mean and the variance simultaneously may lead to biased size

estimates. In general, it is important to model the correlation directly, both for obtaining

reliable inference results and for understanding the network structure.
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4.2 Correlated Scaling

We demonstrate the utility of the correlated scaling through two simulation studies. In the

first, we include systematic transmission error through correlated covariates. Specifically,

we simulate ARD with n = 1000 from the same parameter and hyperparameter setup as

before with Ω as the identity matrix. Now, we simulate each row of X as independent

multivariate normal random variables, with mean µ = (0, 0, 0,−2,−2) and Σ equal to

the correlation matrix used in the missing correlation simulation study. Then, we fit a

model that does not include X. This setup simulates the situation where an unobserved

respondent-group level covariate explains both the group correlation and a systematic bias

like transmission error (i.e. the two columns with mean -2 correspond to groups where

members reveal their status to only a small percent of their social network).

Second, we simulate data from a full network model (a stochastic block model) and

introduce transmission error, again where n = 1000. The simulation design is intentionally

complex in order to best resemble a realistic network. For each simulation, first, a network

is simulated from a stochastic block model with group proportions (0.5, 0.5, 0.25, 0.25) and

connectivity matrix P provided in Equation (6). Then, for each true link, there is a

probability that a respondent does not report the link. The probability of this missing

link between respondents is given by matrix T , where Ti,j denotes the probability that a

respondent in group i correctly reports each link they have to a member of group j, and

inv− logit(∞) = 1 for convenience. This design replicates the situation where respondents

are likely to accurately recall links from certain groups (e.g. men named Pavlo), while they

are likely to underestimate the number of people they know from other groups (e.g. female

sex workers). Furthermore, members in these groups or adjacent groups will provide more

accurate answers (female sex workers will more likely know the status of other female sex
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workers and drug users).

P =


0.2 0.2 0.05 0.05

0.2 0.2 0.05 0.05

0.05 0.05 0.5 0.3

0.05 0.05 0.3 0.5

 T = inv − logit


∞ ∞ −1 −1

∞ ∞ −1 −1

∞ ∞ 2 2

∞ ∞ 2 2

 (6)

The results from the missing covariate and the stochastic block model are shown in Fig-

ures 3 and 4, respectively. In both cases, we plot boxplots of the relative error of each

estimated and scaled ρk, scaling by either all groups or by our proposed correlated scaling.

In both simulations, the correlated scaling clearly accounts for the transmission error and

produces unbiased results. Thus, including weights in the scaling procedure can account

for unobserved errors when the overall bias is similar for correlated populations.
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Figure 3: Boxplot of relative errors of scaled ρ estimates across 100 simulations for missing

covariate with transmission error simulations.
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Figure 4: Boxplot of relative errors of scaled ρ estimates across 100 simulations for SBM

with transmission error simulations.

5 Ukraine Analysis

In this section, we fit our correlated NSUM model to the Ukraine data in order to better

understand the behavior of the key populations. We used RStan to fit both models (Stan

Development Team, 2019). The code used is available in our networkscaleup R package

(Laga et al., 2022). We run three parallel chains for 10,000 iterations each, remove 2,000

iterations for burn-in, and thin each chain by keeping every fifth sample. In all cases the

R̂ measure of convergence is well below 1.05, indicating convergence. Additional MCMC

diagnostics are included in the Supplementary Material. We include only the main results

in the main text. Additionally, in Supplementary Material Section 6, we adapt surrogate

residuals, first proposed by Liu and Zhang (2018), to the Bayesian setting and use these

residuals to further evaluate model fits. We observe no significant lack-of-fit in all of our

diagnostic checks, showing the reliability of our model estimates reported below.
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5.1 Parameter Estimates

We first show the results of the size estimates for the hidden populations and corresponding

95% uncertainty intervals in Table 1. We also include the original estimates (raw and

adjusted) from the Ukraine study. The adjusted size estimates are obtained by multiplying

the average estimates in each subpopulation by a weight calculated based on the level of

the respect answers, and are believed to be closer to the true sizes than the raw estimates.

Our model produced correlated size estimates are very similar to the Ukraine adjusted size

estimates with much wider uncertainty intervals. This is a desired outcome, since simpler

models often lead organizations to put too much confidence in size estimates, while the

uncertainty around hard-to-reach population sizes is typically very large. While a larger

uncertainty interval does not imply a more trustworthy size estimate, it is important to

accurately propagate the uncertainty in the data collection method and the modeling.

Next, we consider the covariate parameters estimates, α and β. Table 2 includes the

group-specific regression coefficients corresponding to age, age2, and level of respect. Age is

standardized with the mean age of 43.7 and standard deviation of 19.0. The standardized

age is then squared and centered to create Age2. Level of respect is centered for each group.

Overall, the parameter estimates are consistent with the expected results. For example,

younger people are more likely to know kids. The chance that someone knows a prisoner

peaks at about 34 and the chance that someone knows divorced men peaks at about 37.

For the hard-to-reach populations, younger respondents are more likely to know people in

all unknown groups, which could potentially provide some guidance for future sampling.

Regarding level of respect, all significant parameters are positive, consistent with the

belief that respondents with a more positive perception of a subpopulation will tend to

know more people from the subpopulation. The two largest significant parameters for
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Table 1: Estimated unknown subpopulation sizes and 95% credible intervals. Values are

rounded to the nearest 100. “Correlated” indicates the results from our correlated model

with the correlated scaling, “Paniotto et al. (2009) Raw“ indicates the estimates reported

in Paniotto et al. (2009) using the NSUM MLE, and “Paniotto et al. (2009) Adjusted”

indicates estimates reported using their method which adjusts for the level of respect.

Subpopulation Correlated
Paniotto et al. (2009)

Raw

Paniotto et al. (2009)

Adjusted

FSW
85,200

(48,100 - 150,000)

34,000

(27,000 - 39,000)

81,000

(65,000 - 93,000)

MSW
6,190

(1,950 - 20,700)

2,400

(1,800 - 3,400)

3,700

(2,800 - 5,200)

MSM
12,300

(5,160 - 28,800)

7,200

(5,300 - 9,100)

14,000

(10,000 - 17,000)

IDU
401,000

(242,000 - 643,000)

103,000

(85,000 - 112,000)

358,000

(285,000 - 389,000)

known groups are for prisoners and kids, which are perhaps more likely to have significant

barrier effects. The parameters for FSW and MSM are the largest across all groups, which

is also consistent with our intuitions.

We also report the global level regression coefficients (gender, education, nationality,

profession, and access to internet). The parameter estimates corresponding to male was

0.01, 0.18 for Ukraine, 0.17 for employed, 0.12 for access to internet, 0.18 for secondary

education, and 0.21 for vocational education, with a baseline of candidate of sciences or

doctor of sciences. Only the 95% credible interval for male included 0. While previous
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Table 2: Table of selected group parameter estimates for the correlated NSUM model. Age

is standardized with mean 43.7 and standard deviation 19.0. Significance at α = 0.05 is

denoted by *. The level of respect question was not asked for “people who died in 2007.”

Subpopulation Age Age2 Level of Respect

Men 20-30 -0.38* -0.17* 0.04*

Female 20-30 -0.37* -0.14* 0.07*

Kids -0.31* 0.00 0.12*

Prisoners 2007 -0.24* -0.24* 0.21*

Divorced Men 2007 -0.22* -0.32* -0.01

Birth 2007 -0.15* -0.12* 0.16*

FSW -0.69* -0.10 0.22*

MSW -0.72* 0.20 0.02

MSM -1.05* -0.20 0.58*

IDU -0.57* -0.31* 0.04

studies have found that men have larger network sizes than women, for the populations

in this study, there is not a significant difference between the number of people reported

between the gender of the respondents. The network literature has shown that employed

and educated individuals typically have larger network sizes. While we are not aware of

literature that studies how access to internet affects network sizes, our finding is intuitive

since access to internet typically means the individual can reach a broader range of contacts,

for example through email.

Finally, we look at the estimated correlations, the key feature of our model. The corre-
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Figure 5: Estimated correlation matrix for the Ukraine data, arranged by a hierarchical

clustering algorithm.

lation matrix is shown in Figure 5 and is sorted using a hierarchical clustering algorithm.

Our model produces many expected correlations, e.g. respondents who know more men

aged 15-17 also know more women 15-17; respondents who know more people aged 20 to 30

are less likely to know people who died in 2007. The results also highlight some interesting
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relationships that are less obvious. First, we find that respondents who know more men

named Pavlo are less likely to know young men, and even less likely to know young women.

Without census information about the birth records of men named Pavlo in Ukraine, we

can guess that Pavlo is more common among older men in Ukraine. Second, respondents

who know more/fewer men who got divorced in 2007 also know more/fewer women who

gave birth in 2007. This correlation reflects that divorce and birth are both family issues

that have similar barrier effects.

The key populations of the Ukraine survey are all highly correlated with one another,

prisoners, and, to a lesser extent, divorced men.

It is important to note that our correlation estimates correspond to the correlation of

the reported number of connections. Therefore, some of the correlation between the hard-

to-reach populations may be an indication of a respondent’s willingness to answer questions

truthfully. That is, if respondents are unwilling to truthfully divulge how many FSW they

know, then they may also be unwilling to answer honestly about IDU, MSW, and MSM,

leading to two groups of people: those who are willing to report knowing members of hard-

to-reach populations and those not willing, potentially increasing the observed correlation.

6 Practical Advice

In this section, we offer guidance on how to better collect and analyze ARD.

Matching target groups with objectives: The first suggestion is to align the questions

about the hard-to-reach groups with how the size estimates will be used in practice. In

the Paniotto et al. (2009) study, the question involving drug users, for example, is “Do you

know people that used drugs by injection for the last 12 months? How many of them?” This
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question is phrased properly, because government organizations can use the size estimate

based on this question to efficiently implement services for current or recent people who

used drugs by injection. On the other hand, consider phrasing “Do you know people that

ever used drugs by injection? How many of them?” In this case, the size estimates cannot

be used directly to allocate resources. Therefore, it is vital to phrase ARD questions to

correspond to the public health objective.

Level of respect: Second, we suggest phrasing “level of respect” questions to maximize

the correlation between the level of respect and the ARD. In Ukraine, the level of respect

question is phrased as, “What level of respect do following groups have in Ukraine...”.

The phrasing focuses on how people in Ukraine feel about the groups rather than how the

respondent feels, leading to a weaker relationship between the level of respect and ARD

responses. However, in Teo et al. (2019), their measure of respondent social acceptability

rating of the hard-to-reach populations results in a closer connection between the ARD

and the level of respect. For the three shared hard-to-reach groups (FSW, MSM, and

IDU), the pairwise correlations in Ukraine between the number of people the respondent

reports knowing and their level of respect for the three groups are 0.038, 0.031, and 0.020,

respectively. On the other hand, the pairwise correlations in Singapore are 0.040, 0.129, and

0.131, respectively. Thus, the level of respect does seem to be a relatively strong predictor

for MSM and IDU in the Singapore data. It is important to ensure that questions are

phrased in order to detect as much correlation as possible.

We are not aware of any study that shows how the phrasing of the level of respect

question affects the correlation between the ARD responses and the level of respect re-

sponses. The phrasing used in the Ukraine study may actually be preferable, and the low

correlation is simply a property of the population. This may be an interesting direction of
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future research.

Similarly, it is important to collect the level of respect questions for all groups. While

the Teo et al. (2019) level of respect responses are more correlated with the ARD than in the

Ukraine dataset, the authors only include information about the hard-to-reach populations.

This results in a loss of information. In our analysis, we are able to account for the level

of respect for all groups, further improving the results.

Inclusion of similar groups: Finally, we recommend including more known groups which

face similar stigma to hard-to-reach populations. Zheng et al. (2006) find that other popu-

lations associated with negative experiences (e.g. prisoners, homicide victims, rape victims,

people who have committed suicide, and people who were in auto accidents) are highly cor-

related. While including correlated groups improves the size estimates in our correlated

model, understanding how connected different groups are is also important. If groups are

identified as being highly correlated with hard-to-reach populations, future researchers can

better understand the social networks of members of hard-to-reach populations, making

future survey sampling easier and more efficient.

7 Discussion

Aggregated relational data (ARD) is an extremely useful tool not only to estimate pop-

ulation sizes, but also to learn about properties of social networks. Many models have

been developed to better capture the behavior of the data and account for the different

sources of bias. One major limitation of the models is that uncertainty estimates are far too

small, so researchers are too confident in their estimates. We improve upon these models

by incorporating covariates and addressing the empirical correlation between groups, and
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advocating the idea of correlated scaling. Another benefit of our model is that we make

very few assumptions about the biases in the model, allowing the data to drive the pa-

rameter estimates. The proposed various model diagnostics are also useful in other general

settings when there is not a ground-truth to compare with. Satisfactory diagnostic results

will increase the credibility of the new NSUM estimates and make them more acceptable

by decision makers.

From this Ukraine study, our results can be used to inform government HIV prevention

policy. Of the four key populations we considered, we estimate that there are nearly four

times as many injection drug users as there are FSW, MSW, and MSM. This is consistent

with other studies that estimate IDUs and their sexual partners make up 64% of people

living with HIV in Ukraine (Des Jarlais et al., 2009). Combined with estimates of HIV

prevalence among key populations, our size estimates illustrate the severity of the HIV

epidemic in Ukraine.

Our analysis hints at, but does not explicitly model, the increased risk in individuals that

belong to more than one key population. Our correlated model has shown that respondents

who report knowing more people in one hidden population are more likely to know people in

the other hidden populations. World Health Organization and others (2011) estimated that

the HIV prevalence among female sex workers who inject drugs is around 43%, while only

around 8.5% in female sex workers who do not inject drugs. Based on these relationships,

it is clear that is it not sufficient to understand only the behavior of these key populations

as a whole, but it is also necessary better understand the relationship between populations

in order to effectively lower new HIV infections.

We believe that future ARD models should better exploit the relationship between

populations, as illustrated by both our estimated correlation matrix and the covariate
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effects. It is clear that some individuals are closer to the key populations than others,

either because of their age, gender, and similar characteristics, or because of their existing

social networks. We would be able to better understand the properties and behavior of

the key populations if we were able to survey respondents who were more familiar with the

populations of interest.
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9 Ukraine Data

Table 3: Ukraine subpopulations and sizes

Subpopulation Known Size

Men aged 20-30 4,088,438

Men aged 15-17 935,153

Men above 70 1,328,606

Women aged 20-30 3,966,956

Women aged 15-17 899,443

Women above 70 2,993,846

Children (boys and girls) aged 10-13 1,869,098

Moldavians 258,619

Romanians 150,989

Poles 144,130

Jews 104,186

Romany 47,587

1st group invalids 278,195

Doctors of any speciality 222,884

People who died in 2007 762,877

Men named Pavlo 323,863

Men who served sentences in places of im-

prisonment in 2007

108,511

Men who officially divorced in 2007 178,364

Women who gave birth to a child in 2007 472,657

Doctors and Candidates of Science who re-

ceived a scientific degree in Ukraine over the

last 15 years

69,471

Nurse women, nurse men, aid-men and aid-

women

487,148

Militiamen 273,200
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10 Bias Decomposition

In this section, we show how to decompose our bias estimates into the transmission, barrier,

and recall effects. While our main focus is on subpopulation size estimates, the effect of each

bias is also an important question. We have found that without overly strict assumptions

on the structure of the biases, estimating each individual bias separately is infeasible,

but imposing incorrect assumptions can negatively affect the other parameter estimates.

Therefore, we estimate only an overall bias term that accounts for all sources of bias and

decompose the bias into the individual biases after fitting the model, leaving the other

model parameters unaffected by the bias assumptions. The form of our bias gives the

model more flexibility in capturing the heterogeneity present in the data.

Our decomposition approach assumes the probability component of the binomial likeli-

hood of the Maltiel et al. (2015) recall error model is equivalent to the mean parameter of

our Poisson likelihood. The recall error model is given by:

yik ∼ Binom(di, e
rkτkqik)

di ∼ Lognormal(µ, σ2)

rk ∼ N(a+ b · log(Nk), σ
2
r)

τk ∼ Beta(mean = νk, dispersion = ηk)

qik ∼ Beta(mean = Nk/N, dispersion = ρik),

(7)

Then, we fit a Bayesian regression model with the posterior means of our probabilities as

the response. Specifically, we first calculate the posterior means as

b̄ik =
Nmc∑
m=1

Nm
k

N
bmik, (8)

where Nmc is the number of posterior samples. Then, using the prior assumptions from
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Maltiel et al. (2015), we assume the model

b̄ik ∼ N(erkτkqik, σ
2)

rk ∼ N(a+ b · log(Nk), σ
2
r)

a ∼ 1, b ∼ 1

σ2
r ∼ Cauchy(0, 2.5)I(σ2

r > 0)

τk ∼ Beta(mean = νk, dispersion = ηk)

qik ∼ Beta(mean = Nk/N, dispersion = ψik)

ψik ∼ U(0, 1),

(9)

where νk and ηk are fixed from prior information and flat non-informative priors are placed

on the remaining hyperparameters. The above priors can easily be adapted to suit new

prior information and different assumptions about the structure of the biases.

11 Scaling

Here we offer a more detailed examination of how problematic the original scaling in Zheng

et al. (2006) may be. We fit our proposed Correlated NSUM model to the Ukraine dataset.

We scale the ρ̂k estimates via four different approaches:

• Scale using G1 with the only “name” subpopulation in the Ukraine dataset, “Men

named Pavlo.”

� C = log
(∑

k∈G1

(
eρk∑

k∈G1
Nk/N

))
• Scale using G1 with “people who died in 2007” and “women who gave birth to a child

in 2007”, G2 with “Women aged 20-30” and B2 with “Men aged 20-30.”
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� C1 = log
(∑

k∈G1

(
eρk∑

k∈G1
Nk/N

))
� C2 = log

(∑
k∈B2

(
eρk∑

k∈B2
Nk/N

))
− log

(∑
k∈G2

(
eρk∑

k∈G2
Nk/N

))
� C = C1 + 1

2
C2

• Scale using G1 with all subpopulations

� C = log
(∑

k∈G1

(
eρk∑

k∈G1
Nk/N

))
• Scale using G1 with all subpopulations, but standardizing by size

� C = log
(

1
nknown

∑
k∈G1

(
eρk
Nk/N

))
where Nk is the known subpopulation size for group k and nknown denotes the number of

known subpopulations.

The results are shown in Supplementary Figure 6. For this dataset, scaling by the only

“name” subpopulation yields reasonable results. However, out of the remaining 9 known

subpopulations, 7 are underestimated (positive relative error). Now suppose we wanted

to use subpopulations we believed had relatively even mixing and low transmission error.

This is the motivation between the second approach, where using the two populations of

“people who died in 2007” and “women who gave birth to child in 2007” seems like they

should have low bias and represents both the older and younger respondents. We realize

that there might be a gender discrepancy because one of the subpopulations corresponds

to women, so we also should secondary groups to scale with. This seems like a reasonable

approach, but it turns out that both people who died in 2007 and women who gave birth

to child in 2007 are produce significantly smaller estimates than they should compared

to other subpopulations, so scaling by these subpopulations leads to overestimating every

other subpopulations. While this example was chosen to demonstrate a point, it is clear
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that if researchers chose the wrong subpopulations to scale with, it can significantly affect

the size estimates of the remaining subpopulations.

Therefore, we suggest a more robust method by using all available known Nk in the

scaling procedure. Using all subpopulations on the original scale results in underestimates

only 6 out of 9 known subpopulations, with one of those 6 being very close to having

zero relative error (prisoners 2007). This is an improvement on previous scaling methods,

but now the larger subpopulations have more influence in the scaling procedure, while not

necessarily corresponding to more accurate estimates. Therefore, we suggest standardizing

by size so that all subpopulations have equal weight. In other words, the average relative

error across all subpopulations should be zero. In this dataset, using the last scaling

procedure with all subpopulations on the relative error scale also results in overestimating

6 out of 9 known subpopulations. However, if the largest known subpopulations were

consistently overestimated or underestimated, this would significantly effect the previous

scaling method, but not the scaling method that standardizes by scale.
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Figure 6: Relative error point estimates in the Ukraine dataset from four different

scaling methods on the ρ̂k estimates. Relative error is calculated by 100 ∗ (Truth −

estimates)/Truth. Subpopulations are ordered from largest to smallest.

12 Missing Data

While not exhaustive, here we provide additional information about the missing responses.

Across all 10,866 rows and columns of Y (26), X (26), and Z (7), only 0.72% of the

responses are missing. However, 17.52% of rows have at least one missing value. After

subsetting data to the columns used for analysis (removed unused ARD groups, level-

of-respect groups, and demographic questions), only 14.95% of rows have at least one

missing value. A barplot showing the percent of responses missing for each subpopulation

is shown in Supplementary Figure 7. Perhaps surprisingly, responses for the hard-to-reach

populations have roughly the same percent missing as other less stigmatized populations.
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Supplementary Figures 8 and 9 show the percent of responses missing for the level-of-respect

and demographic questions, respectively.

We examine the interaction between missing responses for the 20 most frequently occur-

ring intersections in Supplementary Figure 10. Here we see that the majority of the missing

responses are from respondents ignoring a single missing variable. For example, 198 re-

spondents did not answer whether they have access to internet, but did provide an answer

to all other questions we included in our final analysis. The most worrying intersection is

that some respondents did not answer questions for how many MSW, FSW, or MSM they

knew. However, there were only 18 respondents in this intersection, so any bias introduced

by these respondents is likely trivial. There also appears to be very little intersections

between the level-of-respect questions and the ARD. In these 20 most frequently occurring

intersections, there is no overlap between missing ARD and missing LoR responses. Based

on this figure, we do not worry about the missingness between multiple variables.

In Supplementary Figure 11, we plot the data for four gender-age groups (men and

women aged 15-17 or 20-30) against the age of the respondents. Here we clearly see that

a respondents age does play a role in whether a response is missing for each group. In

particular, responses corresponding to men and women aged 15-17 are more likely to be

missing for older respondents, while responses corresponding to men and women aged 70+

are more likely to be missing for younger respondents.

Next, we consider we extend this investigation to the hard-to-reach subpopulations,

FSW, MSW, MSM, and IDUs. Supplementary Figure 12 presents the analogous results.

Here, there is no clear trend that age has any affect on whether a respondent is more or

less likely to have missing responses for the hard-to-reach subpopulations.

Next, we consider how the level-of-respect questions (Z) correspond to the missing
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responses. In Supplementary Figure 11, we see that the only clear relationship between

level-of-respect and the probability of missing responses is that respondents who had a

higher level of respect for men aged 15-17 were more likely to have missing responses,

which is unexpected. For the hard-to-reach populations, Supplementary Figure 14 shows

that for FSW, MSW, and MSM, again, respondents who had a higher level of respect were

more likely to have missing responses. It is not clear why this relationship exists, since

it is expected that respondents who view a subpopulation more favorably would be more

willing to reveal how many people they know in the hard-to-reach subpopulation.

We also examine the distribution of the estimated degrees and the ARD responses

between the data kept for analysis and the data removed because at least one column

contained a missing response. As in the main manuscript, we set all yik > 150 equal to 150.

For the degrees, we estimate the degrees using the Killworth et al. (1998b) MLE estimator

in two ways: (1) using only data kept for analysis, or (2) using all available data. For this

second approach, we estimate the degree using

d̂i = N

∑
k∈Ai yik∑
k∈Ai Nk

,

where Ai denotes the set of subpopulations that both have known Nk and have available

responses for respondent i. The boxplots of the log of these degree estimates are shown

in Supplementary Figure 15. The boxplots indicate that the distributions of the log-

transformed degree estimates are almost identical for the respondents kept for final analysis

and the respondents removed due to one or more missing responses.

Similarly, we also compare the Killworth et al. (1998b) size estimates from either all

respondents using the degrees estimated using the approach above, or from the respondents

with no missing data, i.e. the respondents we used for our final analysis. The size estimates

are plotted against each other on the log-scale in Supplementary Figure 16. We can see
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that removing the respondents with missing responses does not change the size estimates

from the Killworth et al. (1998b) model.

Finally, we compare the distributions of yik/d̂i for the complete data and for the removed

data. We plot histograms of these two groups in Supplementary Figure 17. Note that for

these plots, we remove the responses that are equal to 0 and standardize the histograms

so that the maximum density is 1. We find that almost all groups, the distributions

of the responses are almost identical. The notable exceptions are for the hard-to-reach

populations, but this is mostly do to the small number of non-zero values. In particular,

we find that the complete data has several larger responses for FSW and MSM, while the

MSW and IDU responses are fairly similar for the complete and removed data. These

differences are reasonable given the small sample size, and we believe the bias introduced

by the missing data is minimal. We also compare the percent of responses that are 0 in

Supplementary Table 4. For all subpopulations, the percents are very similar. The largest

difference is for people who died in 2007, which is surprising given the almost identical

distribution of positive values.

To summarize the results, we do not believe that removing the respondents with missing

responses will significantly alter the results. From what we can observe, the removed data

behaves very similarly to the data used for analysis. The missing data appears to be mostly

from respondents simply not answering one question in the survey, although we are unable

to determine why the respondents would behave this way. There does appear to be a weak

relationship between age and the level of missingness for age-related groups like men aged

15-17, but this behavior does not extend to the hard-to-reach subpopulations. We recognize

the importance of appropriately handling missing data, and we recommend this as a future

direction of research for the Network Scale-up Method.
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Figure 7: Barplot showing the percent of missing data for ARD responses in the Ukraine

dataset.
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Figure 8: Barplot showing the percent of missing data for level-of-respect responses in the

Ukraine dataset.
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Figure 9: Barplot showing the percent of missing data for demographic responses in the

Ukraine dataset.
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Figure 12: Missing data matrices for the hard-to-reach groups with respect to age.
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Figure 13: Missing data matrices for the male subpopulations subpopulations, men aged

15-17 (a) and 20-30 (b), with respect to level-of-respect.
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Figure 14: Missing data matrices for the unknown subpopulations, female sex workers (a),

male sex workers (b), men who have sex with men (c), and intravenous drug users (d),

with respect to level-of-respect.
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Figure 17: Histograms of yik/d̂i by subpopulation for both the data used for final analysis

(“Complete” in pink) and the data removed from final analysis (“Removed” in blue).
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Table 4: Percent of yik/d̂i values that are equal to 0 for the complete or missing data.

Subpopulation Complete Missing

Men 20-30 0.042 0.034

Men 15-17 0.153 0.140

Female 20-30 0.050 0.043

Female 15-17 0.162 0.150

Kids 0.160 0.144

Invalids 0.584 0.526

Died 2007 0.345 0.273

Pavlo 0.294 0.258

Prisoners 2007 0.807 0.749

Divorced Men 2007 0.781 0.746

Birth 2007 0.386 0.339

FSW 0.957 0.964

MSW 0.994 0.993

MSM 0.987 0.984

IDU 0.927 0.919
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13 Simulation Study

Here we present simulation studies of other existing NSUM models under correlated data.

The Zheng et al. (2006) model is fit using our networkscaleup package for the negative

binomial parameterization and using RStan for the Poisson parameterization, and the

Maltiel et al. (2015) models are fit using hand-written MCMC code in C++. Note that

given the differences between models, model parameters are not identical, but are chosen

to have roughly the same mean and variance for each column of the responses.

For each model, we evaluate the performance using two metrics. First, we consider the

95% interval of the posterior means for the size estimates across the 100 simulations to show

whether models produce biased or unbiased size estimates when the true underlying data

has correlated random effects. Second, we consider the correlation matrix estimated from

the posterior residuals to see whether the underlying correlation matrix can be accurately

estimated using only the residuals.

13.1 Zheng et al. (2006) Model

Poisson Model : The Poisson model was parameterized as follows, adjusting notation to

ours used in the main manuscript:

yik ∼ Poisson(exp{δi + ρk}γik)

δi ∼ N (0, σ2
δ )

ρk ∼ N (µρ, σ
2
ρ)

γik ∼ gamma(λk, λk)

λk ∝ 1I(λk > 0)
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In this model, the random effects γik and the parameters λk are sampled directly.

Negative Binomial Model : The negative binomial model was parameterized as follows,

adjusting notation to ours used in the main manuscript:

yik ∼ Negative−Binomial
(
exp{δi + ρk}

ωk − 1
,

1

ωk − 1

)
δi ∼ N (0, σ2

δ )

ρk ∼ N (µρ, σ
2
ρ)

1

ωk
∝ 1I(0 < ωk < 1)

In this model, the random effects γik are integrated out, meaning only the ωk are sampled.

We simulate correlated and uncorrelated data from the Poisson parameterization of the

Overdispersed model, with n = 500, K = 5, δi ∼ N(5, 0.72), and ρk = 0.015 for all k.

We simulate random effects for respondent i, γi, from a gamma distribution with mean

1 using the inverse CDF method. First, we simulate a vector of random variables from a

multivariate normal random variable with mean 0 and variance Ω. Second, we transform

these marginal normal mean 0, variance 1 random variables to a vector of correlated uniform

random variables by taking the quantile of the random variables. Finally, we transform

the vector of uniform random variables to a vector of correlated gamma random variables

by taking the inverse CDF of the gamma distribution with shape and rate equal to λ =

(0.5, 0.95, 1.5, 0.98, 0.82). We fit the datasets using both the Poisson and negative binomial

parameterizations.
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13.2 Maltiel et al. (2015) Model

Integrated Barrier Effects Model : The integrated barrier effects model was parameterized

as follows, adjusting notation to ours used in the main manuscript:

yik ∼ Binom (di, qik)

di ∼ Log Normal(µ, σ2)

qik ∼ Beta(mk, ρk)

π(mk) ∝
1

mk

ρk ∼ U(0, 1)

In this model, we follow the proposed MCMC algorithm in Maltiel et al. (2015), using the

beta-binomial distribution to integrate out the qik, only sampling mk and ρk.

Sampled Barrier Effects Model : The sampled barrier effects model is formulated as above,

except the MCMC algorithm samples the qik directly instead of using the beta-binomial

distribution.

We simulate correlated and uncorrelated data from the barrier effects model described in

Maltiel et al. (2015), with n = 500, K = 5, di ∼ N(5, 0.72) and then round to the nearest

integer, and mk = 0.015 for all k. We again use the inverse CDF method to simulate

correlated random effects, this time according to the beta distribution with overdispersion

vector ρ = (0.02, 0.01, 0.005, 0.015, 0.018). We fit the datasets using the integrated random

effects MCMC algorithm provided in the original manuscript, and using the barrier effects

model but sampling the random effects directly.
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Figure 18: 95% interval of posterior means of size estimates across 100 simulations for the

Poisson and negative binomial Zheng et al. (2006) models. The true size is represented by

the horizontal black line.

13.3 Results

The results for the size estimates corresponding to the Zheng et al. (2006) model is shown in

Supplementary Figure 18. For both the Poisson and negative binomial parameterizations,

the size estimates are unbiased when the random effects are uncorrelated. However, for

correlated random effects, the Poisson parameterizations produces biased size estimates,

while the negative binomial model estimates stay unbiased. However, the negative binomial

model produces very conservative uncertainty intervals, with the 95% coverage probabilities

of the 5 groups being 100, 100, 100, 97, and 97.

Regarding the correlation matrix, we present the estimated correlation matrices for

the correlated data rounded to the second decimal place in Equation (10) for the Pois-

son model and Equation (11) for the negative binomial model. We calculate this ma-
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trix for the Poisson model by first calculating the residual matrix for simulation sim as

rm,simik =
√
ysimik −

√
exp{δm,simi + ρm,simk }γm,simik , where the superscript m, sim refers to the

mth posterior sample for simulation sim. For the negative binomial model, we calculate the

residual matrix for simulation sim as rm,simik =
√
ysimik −

√
exp{δm,simi + ρm,simk }, following

the procedure in Zheng et al. (2006). Then, for each residual matrix corresponding to each

posterior sample, ρm,sim, we calculate the sample correlation matrix Ωm,sim. Finally, we

take the average of these Ωm,sim first across m, and then across sim, yielding our estimate

Ω̂.

For both Zheng et al. (2006) models, the correlations between correlated populations is

underestimated while the correlation between uncorrelated populations is overestimated.

While the correlation matrices estimated from the residuals offer some insight into the

true underlying correlation matrix, the model is unable to completely recover the true

correlation through the residuals. Instead, the estimated correlation matrices are reflecting

the correlation induced by the degrees. In more complicated datasets, further correlation

will also be induced by the covariates.

Ω̂Poisson =



1 0.65 0.54 0.15 0.17

0.65 1 0.49 0.17 0.12

0.54 0.49 1 0.16 0.16

0.15 0.17 0.16 1 0.56

0.17 0.12 0.16 0.56 1


(10)
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Ω̂NB =



1 0.75 0.62 0.15 0.17

0.72 1 0.61 0.22 0.16

0.62 0.61 1 0.25 0.23

0.15 0.22 0.25 1 0.69

0.17 0.16 0.23 0.49 1


(11)

The results for the size estimates corresponding to the Maltiel et al. (2015) models

are shown in Supplementary Figure 19. Like for the Zheng et al. (2006) models, both

Maltiel et al. (2015) models produce accurate size estimates when the underlying random

effects are uncorrelated. Based on the findings of the Zheng et al. (2006) simulations, we

first hypothesized that models that sample the random effects directly (e.g. the sampled

barrier effects model) would produce biased estimates, while models that integrate out

random effects (e.g. the integrated barrier effects model) would produce unbiased estimates.

However, these do not seem to be the case. In this case, both the integrated and sampled

barrier effects models produce biased size estimates for correlated data.

For the correlation matrix estimated from the residuals, we estimate the correlation

matrix using the same approach, except now where rm,simik =
√
ysimik −

√
dm,simi mm,sim

k for

the integrated barrier effects model and where rm,simik =
√
ysimik −

√
dm,simi qm,simik for the

sampled barrier effects model. The estimated correlation matrix for the integrated barrier

effects model is in Equation (12), while the estimated correlation matrix for the sampled

barrier effects model is in Equation (13). Given that the true subpopulation sizes are

fixed for all but the unknown subpopulation for the Maltiel et al. (2015) models, these

correlation matrices resemble neither the true underlying random effect correlation matrix

nor the average sample correlation of the simulated datasets. These simulations show that
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Figure 19: 95% interval of posterior means of size estimates across 100 simulations for the

integrated barrier effects and sampled barrier effects Maltiel et al. (2015) models. The true

size is represented by the horizontal black line.

under the true model, the underlying correlation matrix is not accurately estimated from

the residuals.

Ω̂Integrated =



1 0.38 0.14 −0.29 −0.23

0.38 1 0.08 −0.19 −0.26

0.14 0.08 1 −0.14 −0.13

−0.29 −0.19 −0.14 1 0.62

−0.23 −0.26 −0.13 0.62 1


(12)
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Ω̂Sampled =



1 0.22 0.10 −0.10 −0.07

0.22 1 0.07 −0.07 −0.11

0.10 0.07 1 −0.06 −0.06

−0.10 −0.07 −0.06 1 0.21

−0.07 −0.11 −0.06 0.21 1


(13)

Based on the findings, we conjecture that models which have separate parameters to

estimate the mean of the data and the overdispersion can produce unbiased estimates when

data are correlated, while models that have parameters that influence both the mean and

the variance simultaneously may lead to biased size estimates. In general, we believe that it

is important to model the correlation directly, both for obtaining reliable inference results

and for understanding the network structure.

14 Surrogate Residuals

Diagnostics to evaluate how well the assumed model fits the data have been largely under-

developed for models involving ARD. Leave-one-out (LOO) subpopulation size estimates

have been considered in almost all NSUM literature. In addition to LOO, Zheng et al.

(2006) used standardized residuals from their model (defined as rik =
√
yik −

√
aibk) to

study the residual correlation between subpopulations and the relationship between the

residuals and the individual-level predictors. McCormick and Zheng (2012) and Maltiel

et al. (2015) also used absolute relative error of the Nk estimates to evaluate the per-

formance of models under different assumptions, although this line of thinking has limited

applicability to real data because the true Nk is unknown for the hard-to-reach populations.
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Here we propose new Bayesian surrogate residuals to evaluate goodness of fit.

Residuals for discrete data often have limited use because of the unusual visual appear-

ance of the residuals and the lack of any theoretical distribution for the residuals under the

correctly specified model. Liu and Zhang (2018) introduced the surrogate residuals, which

solve these problems by generating continuous residuals that follow a known distribution

under the null distribution, allowing the user to interpret the residuals in a familiar way. For

ARD models, surrogate residuals are most useful because they can be used to detect anoma-

lies between the observed data and the assumed distribution, inform variable selection, and

diagnose the relationship between the response and the covariates. While our model is not

in a class of cumulative link regression models as was the primary focus of Liu and Zhang

(2018), the authors provided two methods to calculate surrogate residuals for general mod-

els. Specifically, the authors showed under their jittering strategy (B) that given an outcome

Y ∼ Fa(y;X,β), jittered surrogate variables S|Y = y ∼ U(Fa(y−1), Fa(y)), and residuals

R = S−E0{S|X}, the residuals R have properties E{R|X} = 0 and R|X ∼ U(−1/2, 1/2)

under the null hypothesis Fa = F0.

Calculating the surrogate residuals in our setting is not obvious. Liu and Zhang (2018)

proposed the surrogate residuals under a frequentist paradigm, while our model is inher-

ently Bayesian. To the best of our knowledge, the surrogate residuals have only been

applied to one Bayesian model (Park et al., 2021). In this case the model was ordinal,

and the authors provided little detail on how to calculate the residuals. Thus, we propose

a method to calculate Bayesian surrogate residuals. Actually calculating the residuals is

difficult since E0{S|X} is typically analytically intractable. However, it is straightforward

to estimate E0{S|X} using Monte Carlo approximations. In Algorithm 2 we outline our

approach for calculating the residuals R, which relies on samples from the posterior predic-
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Algorithm 2: Bayesian Surrogate Residuals

Result: Surrogate residuals R

Set Nmc equal to the number of posterior samples

for each ind in 1:Nmc do

Calculate F ind
a,cond(yik − 1|θ̂ind);

Calculate F ind
a,cond(yik|θ̂ind);

Simulate yind ∼ Poisson(θ̂ind);

Calculate F ind
a (yind − 1|θ̂ind);

Calculate F ind
a (yind|θ̂ind);

Simulate Sind ∼ U(F ind
a (yind − 1|θ̂ind), F ind

a (yind|θ̂ind));

Simulate Sindcond ∼ U(F ind
a,cond(yik − 1|θ̂ind), F ind

a,cond(yik|θ̂ind));

end

Calculate Ê0(S
ind|X) = 1

Nmc

∑Nmc
ind=1 S

ind;

Calculate Rind = Sindcond − Ê0(S
ind|X);

tive distribution. Note that the algorithm is given for a single yik and the process should

be repeated for all combinations of i and k.

In our case, Fa(y
ind) (Fa,cond(yik)) is the CDF of the Poisson distribution evaluated at

the simulated responses (observed responses). Note that under the Bayesian paradigm, for

each observation yik, there is actually a vector of surrogate residuals Rind. Thus, we can

study the posterior distribution of the surrogate residuals, and we recommend looking at

the behavior of the surrogate residuals across multiple posterior samples. Alternatively,

we could use a point estimate for θ̂ (e.g. posterior mean) to calculate a single vector of

surrogate residuals. This approach is more similar to the original frequentist approach, but
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doesn’t capture the uncertainty of the parameter estimates.
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15 Ukraine Analysis

15.1 Posterior predictive check descriptions

Posterior predictive checks are a staple of Bayesian model diagnostics, but have remained

largely unexplored in models for ARD. Zheng et al. (2006) looked at posterior predictive

checks to evaluate the performance of the model in accurately estimating the correct pro-

portions of responses for yik equal to each non-negative integer. They concluded their

model underestimated the proportion of respondents who know exactly one person in each

group of the McCarty dataset, and that data was “heaped” around nice numbers, like 10.

We develop the use of posterior predictive checks and present here several more informative

checks for ARD models and recommend their use in evaluating model fit for future studies.

Probability mass function: First, we recommend replicating the probability mass func-

tion diagnostic from Zheng et al. (2006). We especially recommend looking at P (yik = 0)

and P (yik = 1), as these values don’t typically suffer from rounding, but can inform the user

about unexpected behavior in the data (e.g. fewer people know 0 doctors than expected

from the number of doctors because only respondents who don’t have a family doctor will

report knowing 0 doctors).

Mean and standard deviation: Second, we recommend plotting two forms of mean and

standard deviation: (1) the mean of the responses against the standard deviation of the

responses and (2) the mean of the positive responses against the standard deviation of the

positive responses, grouped by each subpopulation (i.e. the columns of Y ). The conditioned

plots offer an additional comparisons of the summary statistics between empirical data and

the estimates, which is especially needed when several subpopulations have more than 99%

of the responses equal to 0. In this way, we are studying two separate but important
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properties of the data. The conditionally positive mean µ+ and conditionally positive

standard deviation σ+ for subpopulation k are calculated by

µ+ =
1

n+

n∑
i=1

yikI(yik > 0) σ+ =

√∑n
i=1(yik − µ+)2I(yik > 0)

n+
,

where n+ is the number of positive responses in group k, i.e. n+ =
∑n

i=1 I(yik > 0).

Correlation: Posterior predictive checks can also be used to measure the ability to

capture the correlation between a respondent’s responses across subpopulations. For each

posterior sample, the sample correlation is calculated, producing pairwise correlations be-

tween each subpopulation. The distribution of pairwise correlations across the posterior

samples are then compared to the pairwise correlations of the original Ukraine data. For

two given subpopulations k1 and k2, the pairwise correlation is calculated by

r =

∑n
i=1(yik1 − ȳik1)(yik2 − ȳik2)√∑n

i=1(yik1 − ȳik1)2
∑n

i=1(yik2 − ȳik2)2

15.2 Leave-one-out

A leave-one-out procedure can be implemented to evaluate the subpopulation size estimates.

For models where the known subpopulation sizes are fixed in the estimation procedure (e.g.

the Killworth MLE estimator), the known sizes are assumed to be unknown one at a time

and estimated using the remaining known subpopulations. Thus, the model needs to be refit

for each known subpopulation. For models in which all subpopulation sizes are estimands

(e.g. the overdispersed model and our correlated model), the LOO procedure does not

require re-estimating the parameters. Instead, since the subpopulation sizes are scaled

using known sizes, the known size of the left out subpopulation is excluded when scaling

the size estimates. The estimates are then compared to the truth, either visually or using

some metric.
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15.3 Diagnostic Results

Mean and standard deviation: Next, we consider the joint distribution of (positive) mean

and positive standard deviation. The results are shown in Supplementary Figures 20 and

21. There is no clear lack of fit for either of the models, indicating reasonable modeling

of the ARD. We slightly underestimate the mean of several of the groups, potentially

indicating that our model is not properly capturing one of the tail behaviors. However, the

underestimation is mild, and no attempts to better capture the mean proved successful.

Probability mass function: For the probability mass function, we consider 9 different

probabilities in Supplementary Figure 22. where the true proportions are plotted against

the simulated proportions with 95% credible intervals included. We denote the known

subpopulations as circles and the unknown subpopulations as triangles. We also observe

the heaping pointed out by Zheng et al. (2006), especially for P (Y = 2) and P (Y = 10).

Perhaps surprisingly, P (Y = 9) is estimated fairly accurately while P (Y = 11) is estimated

poorly.

Correlation: While we do include correlated random effects in our model, we do not

explicitly model the correlation of the responses. Thus, we still consider the posterior

predictive p-values of the correlation of the responses, as shown in Supplementary Figure

24 for both the in-sample and out-of-sample simulations. Under the true model, we typically

expect the posterior predictive p-values to be concentrated near 0.5. In both cases, the

posterior predictive p-values are reasonably distributed, although the values for the in-

sample checks are much closer to 0.5, as expected.

Leave-one-out : Next, we show the accuracy and validity of our subpopulation size

estimates using LOO. The estimates are shown in Supplementary Figure 25. The subpop-

ulations are ordered by largest to smallest, from largest on the left to smallest on the right.
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In general, subpopulations are estimated reasonably well, given the difficulty of estimating

subpopulation sizes. It is important to note that the size estimates are much more accurate

for our weighted scaling when there are corresponding populations with high correlation,

like men aged 15-17 and female aged 15-17 when using all populations to scale. Because

these subpopulations are more likely to have similar biases, our correlated scaling approach

brings these estimates much closer to the truth.

Many authors have noted that respondents typically overestimate the number of people

they know in large subpopulations and underestimate the number of people they know in

small subpopulations (Zheng et al., 2006; McCormick et al., 2007; Maltiel et al., 2015). For

the correlated model with the Ukraine dataset, this does not seem to be the case.

Surrogate residuals : Finally, we review some results from the surrogate residuals. While

the surrogate residuals can be used in many ways, in this section we show their ability to

detect missing covariates, as is common in ordinary linear regression. Figure 26 shows one

realization of the surrogate residuals corresponding to a single randomly chosen posterior

sample against the standardized age covariate for the subpopulations people who died in

2007 and FSW. Since there is a vector of surrogate residuals for each posterior sample, to

visualize the variability in the residuals across these samples, loess curves for 25 random

samples were are added for reference. In general, there is very little variability across

the posterior samples, except in areas with very few observations (respondents aged older

than 80). For people who died in 2007, the uncorrelated basic model residuals are highly

correlated with age, resulting in a linear loess curve. On the other hand, the residuals

for the correlated model are mostly uncorrelated with age, indicating that the regression

structure in the correlated model does accurately capture the relationship between age and

the responses. There is no indication that higher order terms are needed except for age2.
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For FSW, we see that the relationship between the residuals and age is much weaker,

and even the loess curve for the uncorrelated basic model is relatively flat with a slight

downward trend. For the correlated model the loess curve is almost absolutely flat. In this

case, age seems to play a larger role in the responses for people who died in 2007 than it

does for FSW, which is expected.
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Figure 20: Posterior predictive checks for the mean and standard deviation for in-sample

simulations (a) and out-of-sample simulations (b). The mean and standard deviation of

posterior samples is shown across subpopulation for our correlated model (pink) and for

the observed data (black square). For visualizations, only 500 posterior samples are shown

for each model.
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Figure 21: Posterior predictive checks for conditionally-positive mean and standard de-

viation for in-sample simulations (a) and out-of-sample simulations (b). The mean and

standard deviation of posterior samples is shown across subpopulation for our correlated

model (pink) and for the observed data (black square). For visualizations, only 500 poste-

rior samples are shown for each model.
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Figure 22: Posterior predictive checks for the probability mass function and associated 95%

posterior credible intervals for the in-sample posterior simulations (a) and the out-of-sample

simulations (b). The x-axis and y-axis represents the proportion of simulated responses

and observed responses that are equal to the integer values considered, respectively. The

mean and 95% credible interval of the proportions over the posterior samples is shown using

the shape and error bars. The diagonal line represents true proportion equal to simulated

proportion.
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Figure 23: Posterior predictive checks for subpopulation correlations for the in-sample

simulations (a) and the out-of-sample simulations (b). The posterior predictive p-values

are plotted against the observed correlations of the ARD.
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Figure 24: Posterior predictive checks for subpopulation correlations for the in-sample

simulations (a) and the out-of-sample simulations (b).
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Figure 25: Subpopulation leave-one-out estimates. The subpopulations are ordered from

largest to smallest size, and the relative error represents 100 ∗ (Truth−Predicted)/Truth.

The estimates scaled using all subpopulations is shown with a dotted line and our correlated

scaling results with a solid line.
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Figure 26: Surrogate residuals from the uncorrelated basic model for subpopulations people

who died in 2007 (a) and FSW (c) and from the correlated model for subpopulations people

who died in 2007 (b) and FSW (d). Loess smoothing curves are plotted over residuals for

reference.
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16 Sensitivity Analysis

In this section, we perform sensitivity analysis to assess to robustness of our model to

different choices of priors. Specifically, keep all other priors the same, and change the

following five priors, one at a time:

Flat ρk: To assess how influential the shared Normal prior is on the prevalence parameters,

we instead assume ρk ∝ 1.

Cauchy slope parameters: We assume an even more diffuse prior for all slope parameters

simultaneously, so assess whether our original priors shrink the slope parameters closer to

0. We assuming the following Cauchy priors:

αk ∼ Cauchy(0, 2.5)

βglobalj ∼ Cauchy(0, 2.5)

βgroupk,j ∼ Cauchy(0, 2.5)

Correlation parameters: We also examine the effect that our hyper-parameters have

on the correlation estimates by testing both large and small values of the LkjCholesky

prior. Larger hyper-parameters correspond to smaller correlations, while smaller hyper-

parameters correspond to larger correlations. For reference, a hyper-parameter of 1 corre-

sponds to the uniform density over all correlation matrices.

Ω1/2 ∼ LkjCholesky(0.1)

Ω1/2 ∼ LkjCholesky(10)

Standard deviation parameter: Finally, we consider the sensitivity of our parameter

estimates to the standard deviation of the random effects. There is a long history about
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what priors to use for variance and standard deviations. In the main manuscript, we chose

a diffuse half-Cauchy prior, as suggested by Gelman (2006). We also consider a fairly strong

Gamma prior which will shrink the τN,K parameters towards 0, favoring a smaller standard

deviation. This is an extreme alternative to the prior used in the main manuscript.

τN,k ∼ Gamma(0.01, 0.01)

16.1 Results

We examine the result by comparing the boxplots of the posterior samples for different

parameters in the model. We examine the results for all ρk (Supplementary Figure 27), τk

(Supplementary Figure 28), µk (Supplementary Figure 29), α (Supplementary Figure 30),

βglobal (Supplementary Figure 31), βk,group for age (Supplementary Figure 32), βk,group for

age2 (Supplementary Figure 33), and correlations with groups Men 20-30 (Supplementary

Figure 34), Prisoners (Supplementary Figure 35), and female sex workers (FSW) (Sup-

plementary Figure 36). Note that we look at the estimates for τk and µk instead of τN,k,

since the distribution of τN,k is very right-skewed, making it difficult to visualization. Also,

there is no level-of-respect response for people who died in 2007, so this subpopulation

is removed from Supplementary Figure 30 corresponding to α. In all figures, the “Full”

model describes the original prior setup described in the main manuscript.

We find that in general, the results are very stable, even for strong priors like the

Gamma prior for τN,k. For the prevalence parameters ρk, we find that the Normal pooling

prior does not change the results compared to a flat prior. However, all three priors on

the random errors (standard deviation and correlation) do influence the results. We find

that a Gamma prior of τN,k has the largest effect, which reduces the size of the unknown

subpopulations, but has minimal influence on the estimates for the known subpopulations.
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This is because compared to the original prior specification, the Gamma prior shrinks the

estimates much closer to 0, as seen in Supplementary Figures 28 and 29. We believe that

the Gamma prior is too influential and does not correspond to our prior beliefs. The results

for τk and µk are similar to the results for ρk. This result is expected given the connection

between the random effects and the prevalence parameters.

Across all priors, the slope estimates are stable.

Finally, for the correlation estimates in Supplementary Figures 34, 35, and 36, we

find that the correlation priors have the largest influence on the parameter estimates. In

particular, a larger hyper-parameter results in smaller correlation estimates while a smaller

hyper-parameter results in larger correlation estimates. This is expected and consistent

with the prior specification. However, the correlation estimates are still fairly stable. In

the most extreme case here for the correlation between men aged 20-30 and men named

Pavlo, the posterior mean from the large hyper-parameter is -0.172 while the posterior mean

from the small hyper-parameter is -0.246. Considering the extreme difference between these

two priors, this difference is reasonably small and does not change the interpretation of the

results.
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Figure 27: Estimates of ρ under different priors.
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Figure 28: Estimates of τk under different priors.
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Figure 29: Estimates of µk under different priors.
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Figure 30: Estimates of α under different priors.

79



Access to Internet Secondary Education Vocational Education

Gender Ukrainian Employed

C
au

ch
y 

Sl
op

e

Fl
at

 R
ho Fu

ll
G

am
m

a 
Ta

u

H
ig

h 
LK

J

Lo
w

 L
KJ

C
au

ch
y 

Sl
op

e

Fl
at

 R
ho Fu

ll
G

am
m

a 
Ta

u

H
ig

h 
LK

J

Lo
w

 L
KJ

C
au

ch
y 

Sl
op

e

Fl
at

 R
ho Fu

ll
G

am
m

a 
Ta

u

H
ig

h 
LK

J

Lo
w

 L
KJ

0.10

0.15

0.20

0.25

0.10

0.15

0.20

0.25

0.30

0.35

0.10

0.15

0.20

0.25

0.10

0.15

0.20

0.25

0.30

−0.05

0.00

0.05

0.05

0.10

0.15

0.20

Model

E
st

im
at

e

Model Cauchy Slope
Flat Rho

Full
Gamma Tau

High LKJ
Low LKJ

Figure 31: Estimates of βglobal under different priors.
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Figure 32: Estimates of βgroupk for age under different priors.
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Figure 33: Estimates of βgroupk for age2 under different priors.
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Figure 34: Estimates of correlations with men 20-30 under different priors.

81



Birth2007 FSW MSW MSM IDU

Invalids Died2007 Pavlo Prisoners2007 DivorcedMen2007

M20−30 M15−17 F20−30 F15−17 Kids

C
au

ch
y 

Sl
op

e
Fl

at
 R

ho Fu
ll

G
am

m
a 

Ta
u

H
ig

h 
LK

J
Lo

w
 L

KJ

C
au

ch
y 

Sl
op

e
Fl

at
 R

ho Fu
ll

G
am

m
a 

Ta
u

H
ig

h 
LK

J
Lo

w
 L

KJ

C
au

ch
y 

Sl
op

e
Fl

at
 R

ho Fu
ll

G
am

m
a 

Ta
u

H
ig

h 
LK

J
Lo

w
 L

KJ

C
au

ch
y 

Sl
op

e
Fl

at
 R

ho Fu
ll

G
am

m
a 

Ta
u

H
ig

h 
LK

J
Lo

w
 L

KJ

C
au

ch
y 

Sl
op

e
Fl

at
 R

ho Fu
ll

G
am

m
a 

Ta
u

H
ig

h 
LK

J
Lo

w
 L

KJ

−0.15
−0.10
−0.05

0.00

0.35
0.40
0.45
0.50

0.35
0.40
0.45
0.50
0.55

−0.10
−0.05

0.00
0.05

0.950

0.975

1.000

1.025

1.050

0.0
0.1
0.2
0.3

−0.15
−0.10
−0.05

0.00
0.05

0.1

0.2

0.3

−0.1
0.0
0.1
0.2
0.3
0.4

−0.10
−0.05

0.00
0.05
0.10

0.05
0.10
0.15
0.20
0.25

0.2

0.3

0.4

−0.10
−0.05

0.00
0.05
0.10
0.15

0.10
0.15
0.20
0.25

0.0

0.1

0.2

Model

E
st

im
at

e

Model Cauchy Slope
Flat Rho

Full
Gamma Tau

High LKJ
Low LKJ

Figure 35: Estimates of correlations with prisoners in 2007 under different priors.
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Figure 36: Estimates of correlations with female sex workers under different priors.
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17 MCMC Diagnostics

Figure 37: Trace plots for parameters related to ρ.

Figure 38: ACF plots for parameters related to ρ.
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Figure 39: Trace plots for parameters related to δ.

Figure 40: ACF plots for parameters related to δ.
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Figure 41: Trace plots for parameters related to τ .

Figure 42: ACF plots for parameters related to τ .
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Figure 43: Trace plots for parameters related to Ω.

Figure 44: ACF plots for parameters related to Ω.
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Figure 45: Trace plots for parameters related to α.

Figure 46: ACF plots for parameters related to α.
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Figure 47: Trace plots for parameters related to βglobal.

Figure 48: ACF plots for parameters related to βglobal.
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Figure 49: Trace plots for parameters related to βgroup.

Figure 50: ACF plots for parameters related to βgroup.
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Figure 51: R̂ values.
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